The role of vacuolar ion channels in salt stress tolerance in the liverwort Conocephalum conicum

[1]  S. Shabala,et al.  Hypoxia Sensing in Plants: On a Quest for Ion Channels as Putative Oxygen Sensors , 2017, Plant & cell physiology.

[2]  H. Dziubińska,et al.  Vacuolar ion channels in the liverwort Marchantia polymorpha: influence of ion channel inhibitors , 2017, Planta.

[3]  K. Ishizaki Evolution of land plants: insights from molecular studies on basal lineages , 2017, Bioscience, biotechnology, and biochemistry.

[4]  R. Stroud,et al.  Structure, inhibition, and regulation of two-pore channel TPC1 from Arabidopsis thaliana , 2016, bioRxiv.

[5]  R. Stroud,et al.  Structure, inhibition, and regulatory sites of TPC1 from Arabidopsis thaliana , 2016, Nature.

[6]  Youxing Jiang,et al.  Structure of Voltage-gated Two-pore Channel TPC1 from Arabidopsis thaliana , 2015, Nature.

[7]  E. Peiter,et al.  Systemic cytosolic Ca(2+) elevation is activated upon wounding and herbivory in Arabidopsis. , 2015, The New phytologist.

[8]  W. Gruszecki,et al.  Menthol-induced action potentials in Conocephalum conicum as a result of unspecific interactions between menthol and the lipid phase of the plasma membrane. , 2015, Physiologia plantarum.

[9]  H. Dziubińska,et al.  A nitrate-permeable ion channel in the tonoplast of the moss Physcomitrella patens , 2015, Planta.

[10]  O. Dobrovinskaya,et al.  Non-selective cation channels in plasma and vacuolar membranes and their contribution to K+ transport. , 2014, Journal of plant physiology.

[11]  Simon Gilroy,et al.  Salt stress-induced Ca2+ waves are associated with rapid, long-distance root-to-shoot signaling in plants , 2014, Proceedings of the National Academy of Sciences.

[12]  N. Uozumi,et al.  Sodium transport system in plant cells , 2013, Front. Plant Sci..

[13]  G. Schönknecht Calcium Signals from the Vacuole , 2013, Plants.

[14]  H. Dziubińska,et al.  Cation-permeable vacuolar ion channels in the moss Physcomitrella patens: a patch-clamp study , 2013, Planta.

[15]  F. Zeng,et al.  Differential Activity of Plasma and Vacuolar Membrane Transporters Contributes to Genotypic Differences in Salinity Tolerance in a Halophyte Species, Chenopodium quinoa , 2013, International journal of molecular sciences.

[16]  S. Shabala,et al.  Reduced Tonoplast Fast-Activating and Slow-Activating Channel Activity Is Essential for Conferring Salinity Tolerance in a Facultative Halophyte, Quinoa1[C][W][OA] , 2013, Plant Physiology.

[17]  H. Sticht,et al.  Differential contribution of EF-hands to the Ca²⁺-dependent activation in the plant two-pore channel TPC1. , 2011, The Plant journal : for cell and molecular biology.

[18]  E. Peiter The plant vacuole: emitter and receiver of calcium signals. , 2011, Cell calcium.

[19]  R. Hedrich,et al.  TPC1-SV channels gain shape. , 2011, Molecular plant.

[20]  K. Al-Rasheid,et al.  Guard cell-specific calcium sensitivity of high density and activity SV/TPC1 channels. , 2010, Plant & cell physiology.

[21]  R. Hedrich,et al.  The fou2 mutation in the major vacuolar cation channel TPC1 confers tolerance to inhibitory luminal calcium. , 2009, The Plant journal : for cell and molecular biology.

[22]  K. Venema,et al.  Plant NHX cation/proton antiporters , 2009, Plant signaling & behavior.

[23]  S. Shabala,et al.  Homeostatic control of slow vacuolar channels by luminal cations and evaluation of the channel-mediated tonoplast Ca2+ fluxes in situ , 2008, Journal of experimental botany.

[24]  A. Hanaka,et al.  Characteristics of anion channels in the tonoplast of the liverwort Conocephalum conicum. , 2007, Plant & cell physiology.

[25]  M. Stolarz,et al.  The influence of glutamic and aminoacetic acids on the excitability of the liverwort Conocephalum conicum. , 2007, Journal of plant physiology.

[26]  G. Schönknecht,et al.  Vacuolar calcium channels. , 2007, Journal of experimental botany.

[27]  A. Chételat,et al.  A gain-of-function allele of TPC1 activates oxylipin biogenesis after leaf wounding in Arabidopsis. , 2007, The Plant journal : for cell and molecular biology.

[28]  J. Scholz-Starke,et al.  On the Interaction of Neomycin with the Slow Vacuolar Channel of Arabidopsis thaliana , 2006, The Journal of general physiology.

[29]  E. Blumwald,et al.  Vacuolar Na+/H+ antiporter cation selectivity is regulated by calmodulin from within the vacuole in a Ca2+- and pH-dependent manner. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[30]  A. Hetherington,et al.  The vacuolar Ca2+-activated channel TPC1 regulates germination and stomatal movement , 2005, Nature.

[31]  R. Hedrich,et al.  K+ currents through SV-type vacuolar channels are sensitive to elevated luminal sodium levels. , 2005, The Plant journal : for cell and molecular biology.

[32]  G. Schönknecht,et al.  Mechanism of luminal Ca2+ and Mg2+ action on the vacuolar slowly activating channels , 2004, Planta.

[33]  E. Król,et al.  Low-temperature induced transmembrane potential changes in the liverwort Conocephalum conicum. , 2003, Plant & cell physiology.

[34]  F. J. Quintero,et al.  The Arabidopsis Na+/H+Exchanger AtNHX1 Catalyzes Low Affinity Na+ and K+ Transport in Reconstituted Liposomes* , 2002, The Journal of Biological Chemistry.

[35]  T. Furuichi,et al.  A putative two pore channel AtTPC1 mediates Ca(2+) flux in Arabidopsis leaf cells. , 2001, Plant & cell physiology.

[36]  M. Gruwel,et al.  Effects of Sodium Chloride on plant cells; a 31P and 23Na NMR system to study salt tolerance. , 2001, Plant science : an international journal of experimental plant biology.

[37]  T. D. Bunney,et al.  Slow vacuolar channels from barley mesophyll cells are regulated by 14‐3‐3 proteins , 2001, FEBS letters.

[38]  E. Blumwald,et al.  Sodium transport in plant cells. , 2000, Biochimica et biophysica acta.

[39]  G. Schönknecht,et al.  Simple method to isolate vacuoles and protoplasts for patch-clamp experiments , 2000, Protoplasma.

[40]  O. Dobrovinskaya,et al.  Cooperative block of the plant endomembrane ion channel by ruthenium red. , 1999, Biophysical journal.

[41]  Russell L. Jones,et al.  Reversible protein phosphorylation regulates the activity of the slow‐vacuolar ion channel , 1997 .

[42]  R. Hedrich,et al.  Slowly activating vacuolar channels can not mediate Ca2+-induced Ca2+ release , 1997 .

[43]  A. Amtmann,et al.  A unified procedure for the correction of liquid junction potentials in patch clamp experiments on endo- and plasma membranes. , 1997, Journal of experimental botany.

[44]  D. J. Walker,et al.  Potassium homeostasis in vacuolate plant cells. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Y. Hiramoto,et al.  Short‐term regulation of cytosolic Ca2+, cytosolic pH and vacuolar pH under NaCl stress in the charophyte alga Nitellopsis obtusa , 1996 .

[46]  W. Simonis,et al.  Electrochemical Potential Gradients of H+, K+, Ca2+, and Cl- across the Tonoplast of the Green Alga Eremosphaera Viridis , 1995, Plant physiology.

[47]  B. Hille,et al.  Electrical measurements on endomembranes. , 1992, Science.

[48]  M. Sakata,et al.  Changes in the Cytoplasmic and Vacuolar pH in Intact Cells of Mung Bean Root-Tips under High-NaCl Stress at Different External Concentrations of Ca2+ Ions , 1992 .

[49]  F. Maathuis,et al.  Sodium Chloride Compartmentation in Leaf Vacuoles of the Halophyte Suaeda maritima (L.) Dum. and its Relation to Tonoplast Permeability , 1992 .

[50]  M. Tazawa,et al.  Salt Stress-Induced Cytoplasmic Acidification and Vacuolar Alkalization in Nitellopsis obtusa Cells : In VivoP-Nuclear Magnetic Resonance Study. , 1989, Plant physiology.

[51]  H. Felle,et al.  Cytoplasmic free calcium in Riccia fluitans L. and Zea mays L.: Interaction of Ca2+ and pH? , 1988, Planta.

[52]  E. Martinoia,et al.  Single potassium channels in membranes of isolated mesophyll barley vacuoles , 1987, The Journal of Membrane Biology.

[53]  R. Hedrich,et al.  Patch‐clamp studies of ion transport in isolated plant vacuoles , 1986 .

[54]  K. Trěbacz,et al.  Light-triggered action potentials in the liverwort Conocephalum conicum , 1985 .

[55]  H. Dziubińska,et al.  Electrical activity of the liverwort Conocephalum conicum: The all-or-nothing law, strength-duration relation, refractory periods and intracellular potentials , 1983 .

[56]  E. Król,et al.  Calcium-Dependent Voltage Transients Evoked by Illumination in the Liverwort Conocephalum conicum , 1999 .