Efficient semiparametric estimation in generalized partially linear additive models for longitudinal/clustered data

We consider efficient estimation of the Euclidean parameters in a generalized partially linear additive models for longitudinal/clustered data when multiple covariates need to be modeled nonparametrically, and propose an estimation procedure based on a spline approximation of the nonparametric part of the model and the generalized estimating equations (GEE). Although the model in consideration is natural and useful in many practical applications, the literature on this model is very limited because of challenges in dealing with dependent data for nonparametric additive models. We show that the proposed estimators are consistent and asymptotically normal even if the covariance structure is misspecified. An explicit consistent estimate of the asymptotic variance is also provided. Moreover, we derive the semiparametric efficiency score and information bound under general moment conditions. By showing that our estimators achieve the semiparametric information bound, we effectively establish their efficiency in a stronger sense than what is typically considered for GEE. The derivation of our asymptotic results relies heavily on the empirical processes tools that we develop for the longitudinal/clustered data. Numerical results are used to illustrate the finite sample performance of the proposed estimators.

[1]  Jianhua Z. Huang,et al.  Polynomial Spline Estimation and Inference for Varying Coefficient Models with Longitudinal Data , 2003 .

[2]  Jianhua Z. Huang Local asymptotics for polynomial spline regression , 2003 .

[3]  Zhongyi Zhu,et al.  Robust Estimation in Generalized Partial Linear Models for Clustered Data , 2005 .

[4]  R. Carroll,et al.  Efficient Semiparametric Marginal Estimation for Longitudinal/Clustered Data , 2005 .

[5]  S. Geer Empirical Processes in M-Estimation , 2000 .

[6]  P. Diggle,et al.  Semiparametric models for longitudinal data with application to CD4 cell numbers in HIV seroconverters. , 1994, Biometrics.

[7]  S. Zeger,et al.  Longitudinal data analysis using generalized linear models , 1986 .

[8]  P. Speckman Kernel smoothing in partial linear models , 1988 .

[9]  Jianhua Z. Huang Projection estimation in multiple regression with application to functional ANOVA models , 1998 .

[10]  Chenlei Leng,et al.  Semiparametric Mean–Covariance Regression Analysis for Longitudinal Data , 2009 .

[11]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[12]  K. Do,et al.  Efficient and Adaptive Estimation for Semiparametric Models. , 1994 .

[13]  Wolfgang Härdle,et al.  Partially Linear Models , 2000 .

[14]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[15]  Jianhua Z. Huang,et al.  Varying‐coefficient models and basis function approximations for the analysis of repeated measurements , 2002 .

[16]  P. Sasieni,et al.  Non-orthogonal projections and their application to calculating the information in a partly linear Cox model , 1992 .

[17]  R. Carroll,et al.  Semiparametric Regression for Clustered Data Using Generalized Estimating Equations , 2001 .

[18]  P. Diggle,et al.  Analysis of Longitudinal Data , 2003 .

[19]  T. Severini,et al.  Quasi-Likelihood Estimation in Semiparametric Models , 1994 .

[20]  S. R. Jammalamadaka,et al.  Empirical Processes in M-Estimation , 2001 .

[21]  Hung Chen,et al.  Convergence Rates for Parametric Components in a Partly Linear Model , 1988 .

[22]  Arnab Maity,et al.  Efficient Semiparametric Marginal Estimation for the Partially Linear Additive Model for Longitudinal/Clustered Data , 2009, Statistics in biosciences.

[23]  Jianhua Z. Huang,et al.  Efficient estimation in marginal partially linear models for longitudinal/clustered data using splines , 2007 .

[24]  Zhongyi Zhu,et al.  Estimation in a semiparametric model for longitudinal data with unspecified dependence structure , 2002 .

[25]  Naisyin Wang Marginal nonparametric kernel regression accounting for within‐subject correlation , 2003 .

[26]  C. J. Stone,et al.  The Use of Polynomial Splines and Their Tensor Products in Multivariate Function Estimation , 1994 .

[27]  P. Bickel Efficient and Adaptive Estimation for Semiparametric Models , 1993 .

[28]  Kani Chen,et al.  Partial Linear Regression Models for Clustered Data , 2006 .

[29]  J. Craggs Applied Mathematical Sciences , 1973 .

[30]  Raymond J. Carroll,et al.  Semiparametric regression for clustered data , 2001 .

[31]  R. Kanwal Linear Integral Equations , 1925, Nature.