Dynamical compensation and structural identifiability of biological models: Analysis, implications, and reconciliation

The concept of dynamical compensation has been recently introduced to describe the ability of a biological system to keep its output dynamics unchanged in the face of varying parameters. However, the original definition of dynamical compensation amounts to lack of structural identifiability. This is relevant if model parameters need to be estimated, as is often the case in biological modelling. Care should we taken when using an unidentifiable model to extract biological insight: the estimated values of structurally unidentifiable parameters are meaningless, and model predictions about unmeasured state variables can be wrong. Taking this into account, we explore alternative definitions of dynamical compensation that do not necessarily imply structural unidentifiability. Accordingly, we show different ways in which a model can be made identifiable while exhibiting dynamical compensation. Our analyses enable the use of the new concept of dynamical compensation in the context of parameter identification, and reconcile it with the desirable property of structural identifiability.

[1]  Joseph J. DiStefano,et al.  Dynamic Systems Biology Modeling and Simulation , 2015 .

[2]  Julio R. Banga,et al.  Dynamical compensation in biological systems as a particular case of structural non-identifiability , 2017, ArXiv.

[3]  M. Khammash,et al.  Antithetic Integral Feedback Ensures Robust Perfect Adaptation in Noisy Biomolecular Networks. , 2016, Cell systems.

[4]  Julio R. Banga,et al.  Dynamical compensation and structural identifiability: analysis, implications, and reconciliation , 2017, ArXiv.

[5]  Alejandro F. Villaverde,et al.  Identifiability of large nonlinear biochemical networks , 2016 .

[6]  J. Jacquez,et al.  Numerical parameter identifiability and estimability: Integrating identifiability, estimability, and optimal sampling design , 1985 .

[7]  Eric Walter,et al.  Identification of Parametric Models: from Experimental Data , 1997 .

[8]  A. Krener,et al.  Nonlinear controllability and observability , 1977 .

[9]  Natal A. W. van Riel,et al.  Dynamic modelling and analysis of biochemical networks: mechanism-based models and model-based experiments , 2006, Briefings Bioinform..

[10]  Kunihiko Kaneko,et al.  Dynamics robustness of cascading systems , 2016, bioRxiv.

[11]  Johan Karlsson,et al.  Comparison of approaches for parameter identifiability analysis of biological systems , 2014, Bioinform..

[12]  V. Bolie,et al.  Coefficients of normal blood glucose regulation. , 1961, Journal of applied physiology.

[13]  Marisa C Eisenberg,et al.  A confidence building exercise in data and identifiability: Modeling cancer chemotherapy as a case study. , 2017, Journal of theoretical biology.

[14]  Ursula Klingmüller,et al.  Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood , 2009, Bioinform..

[15]  J. Stelling,et al.  Robustness of Cellular Functions , 2004, Cell.

[16]  W. Lim,et al.  Defining Network Topologies that Can Achieve Biochemical Adaptation , 2009, Cell.

[17]  C. A. Desoer,et al.  Nonlinear Systems Analysis , 1978 .

[18]  S. Leibler,et al.  Robustness in simple biochemical networks , 1997, Nature.

[19]  Gaudenz Danuser,et al.  Linking data to models: data regression , 2006, Nature Reviews Molecular Cell Biology.

[20]  Thomas R. B. Grandjean,et al.  Structural identifiability analyses of candidate models for in vitro Pitavastatin hepatic uptake , 2014, Comput. Methods Programs Biomed..

[21]  Michael J. Chappell,et al.  Structural identifiability and indistinguishability analyses of the Minimal Model and a Euglycemic Hyperinsulinemic Clamp model for glucose-insulin dynamics , 2011, Comput. Methods Programs Biomed..

[22]  Maksat Ashyraliyev,et al.  Systems biology: parameter estimation for biochemical models , 2009, The FEBS journal.

[23]  James W. T. Yates,et al.  A new general glucose homeostatic model using a proportional-integral-derivative controller , 2011, Comput. Methods Programs Biomed..

[24]  Haihong Zhu,et al.  Parameter Identifiability and Estimation of HIV/AIDS Dynamic Models , 2008, Bulletin of mathematical biology.

[25]  Maria Pia Saccomani,et al.  DAISY: A new software tool to test global identifiability of biological and physiological systems , 2007, Comput. Methods Programs Biomed..

[26]  Joseph J. DiStefano,et al.  On the relationships between structural identifiability and the controllability, observability properties , 1977 .

[27]  Xiaohua Xia,et al.  On Identifiability of Nonlinear ODE Models and Applications in Viral Dynamics , 2011, SIAM Rev..

[28]  C. Cobelli,et al.  Parameter and structural identifiability concepts and ambiguities: a critical review and analysis. , 1980, The American journal of physiology.

[29]  Neil D. Evans,et al.  Parameter Identifiability of Fundamental Pharmacodynamic Models , 2016, Front. Physiol..

[30]  U. Alon,et al.  Dynamical compensation in physiological circuits , 2016, Molecular systems biology.

[31]  Arild Thowsen,et al.  Structural identifiability , 1977, 1977 IEEE Conference on Decision and Control including the 16th Symposium on Adaptive Processes and A Special Symposium on Fuzzy Set Theory and Applications.

[32]  Jens Timmer,et al.  Higher-order Lie symmetries in identifiability and predictability analysis of dynamic models. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  Nicolette Meshkat,et al.  On Finding and Using Identifiable Parameter Combinations in Nonlinear Dynamic Systems Biology Models and COMBOS: A Novel Web Implementation , 2014, PloS one.

[34]  J. Banga,et al.  Structural Identifiability of Systems Biology Models: A Critical Comparison of Methods , 2011, PloS one.

[35]  U. Alon,et al.  Robustness in bacterial chemotaxis , 2022 .

[36]  Antonis Papachristodoulou,et al.  Delineating parameter unidentifiabilities in complex models. , 2016, Physical review. E.

[37]  Julio R. Banga,et al.  Reverse engineering and identification in systems biology: strategies, perspectives and challenges , 2014, Journal of The Royal Society Interface.

[38]  Eduardo D. Sontag Dynamic compensation, parameter identifiability, and equivariances , 2017, PLoS Comput. Biol..

[39]  Francesco Amato,et al.  Predictive mathematical model of cardiac troponin release following acute myocardial infarction , 2017, 2017 IEEE 14th International Conference on Networking, Sensing and Control (ICNSC).

[40]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[41]  Uri Alon,et al.  A note on dynamical compensation and its relation to parameter identifiability , 2017, bioRxiv.

[42]  R Steele,et al.  A two-compartment calculator for the dog glucose pool in the nonsteady state. , 1974, Federation proceedings.

[43]  Antonis Papachristodoulou,et al.  Structural Identifiability of Dynamic Systems Biology Models , 2016, PLoS Comput. Biol..

[44]  Lennart Ljung,et al.  On global identifiability for arbitrary model parametrizations , 1994, Autom..

[45]  M J Chappell,et al.  Extensions to a procedure for generating locally identifiable reparameterisations of unidentifiable systems. , 2000, Mathematical biosciences.