MIT Autonomous Vehicle Technology Study: Large-Scale Deep Learning Based Analysis of Driver Behavior and Interaction with Automation

Today, and possibly for a long time to come, the full driving task is too complex an activity to be fully formalized as a sensing-acting robotics system that can be explicitly solved through model-based and learning-based approaches in order to achieve full unconstrained vehicle autonomy. Localization, mapping, scene perception, vehicle control, trajectory optimization, and higher-level planning decisions associated with autonomous vehicle development remain full of open challenges. This is especially true for unconstrained, real-world operation where the margin of allowable error is extremely small and the number of edge-cases is extremely large. Until these problems are solved, human beings will remain an integral part of the driving task, monitoring the AI system as it performs anywhere from just over 0% to just under 100% of the driving. The governing objectives of the MIT Autonomous Vehicle Technology (MIT-AVT) study are to (1) undertake large-scale real-world driving data collection, and (2) gain a holistic understanding of how human beings interact with vehicle automation technology. In pursuing these objectives, we have instrumented 21 Tesla Model S and Model X vehicles, 2 Volvo S90 vehicles, and 2 Range Rover Evoque vehicles for both long-term (over a year per driver) and medium term (one month per driver) naturalistic driving data collection. The recorded data streams include IMU, GPS, CAN messages, and high-definition video streams of the driver face, the driver cabin, the forward roadway, and the instrument cluster. The study is on-going and growing. To date, we have 78 participants, 7,146 days of participation, 275,589 miles, and 3.5 billion video frames. This paper presents the design of the study, the data collection hardware, the processing of the data, and the computer vision algorithms currently being used to extract actionable knowledge from the data.