Coherency strain and the kinetics of phase separation in LiFePO4 nanoparticles.

A theoretical investigation of the effects of elastic coherency strain on the thermodynamics, kinetics, and morphology of intercalation in single LiFePO(4) nanoparticles yields new insights into this important battery material. Anisotropic elastic stiffness and misfit strains lead to the unexpected prediction that low-energy phase boundaries occur along {101} planes, while conflicting reports of phase boundary orientations are resolved by a partial loss of coherency in the [001] direction. Elastic relaxation near surfaces leads to the formation of a striped morphology with a characteristic length scale predicted by the model, yielding an estimate of the interfacial energy. The effects of coherency strain on solubility and galvanostatic discharge are studied with a reaction-limited phase-field model that quantitatively captures the influence of misfit strain, particle size, and temperature on solubility seen in experiments. Coherency strain strongly suppresses phase separation during discharge, which enhances rate capability and extends cycle life. The effects of elevated temperature and the feasibility of nucleation are considered in the context of multiparticle cathodes.

[1]  Charles Delacourt,et al.  Study of the LiFePO4/FePO4 Two-Phase System by High-Resolution Electron Energy Loss Spectroscopy , 2006 .

[2]  Marnix Wagemaker,et al.  Dynamic solubility limits in nanosized olivine LiFePO4. , 2011, Journal of the American Chemical Society.

[3]  M. R. Palacín,et al.  High temperature electrochemical performance of nanosized LiFePO4 , 2010 .

[4]  W. Craig Carter,et al.  Thermodynamically consistent variational principles with applications to electrically and magnetically active systems , 2004 .

[5]  C. Delmas,et al.  Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model. , 2008, Nature materials.

[6]  Rahul Malik,et al.  Kinetics of non-equilibrium lithium incorporation in LiFePO4. , 2011, Nature materials.

[7]  Byoungwoo Kang,et al.  Battery materials for ultrafast charging and discharging , 2009, Nature.

[8]  Martin Z. Bazant,et al.  Intercalation dynamics in rechargeable battery materials : General theory and phase-transformation waves in LiFePO4 , 2008 .

[9]  G. Ceder,et al.  Elastic properties of olivine LixFePO4 from first principles , 2006 .

[10]  Peter R. Slater,et al.  Atomic-Scale Investigation of Defects, Dopants, and Lithium Transport in the LiFePO4 Olivine-Type Battery Material , 2005 .

[11]  Takashi Ida,et al.  Isolation of Solid Solution Phases in Size‐Controlled LixFePO4 at Room Temperature , 2009 .

[12]  J. Tarascon,et al.  Development and implementation of a high temperature electrochemical cell for lithium batteries , 2007 .

[13]  S. Pennycook,et al.  Vacancy-driven anisotropic defect distribution in the battery-cathode material LiFePO4. , 2011, Physical review letters.

[14]  John O. Thomas,et al.  Thermal stability of LiFePO4-based cathodes , 1999 .

[15]  L. Nazar,et al.  Direct synthesis of nanocrystalline Li0.90FePO4: observation of phase segregation of anti-site defects on delithiation , 2011 .

[16]  J. S. Rowlinson,et al.  Translation of J. D. van der Waals' “The thermodynamik theory of capillarity under the hypothesis of a continuous variation of density” , 1979 .

[17]  Rahul Malik,et al.  Particle size dependence of the ionic diffusivity. , 2010, Nano letters.

[18]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[19]  Dane Morgan,et al.  Li Conductivity in Li x MPO 4 ( M = Mn , Fe , Co , Ni ) Olivine Materials , 2004 .

[20]  John W. Cahn,et al.  On Spinodal Decomposition , 1961 .

[21]  Phase Separation with Anisotropic Coherency Strain , 2012, 1202.1626.

[22]  Yet-Ming Chiang,et al.  Electronically conductive phospho-olivines as lithium storage electrodes , 2002, Nature materials.

[23]  Krishna Garikipati,et al.  The Role of Coherency Strains on Phase Stability in LixFePO4: Needle Crystallites Minimize Coherency Strain and Overpotential , 2009 .

[24]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[25]  W. Craig Carter,et al.  Electrochemically Driven Phase Transitions in Insertion Electrodes for Lithium-Ion Batteries: Examples in Lithium Metal Phosphate Olivines , 2010 .

[26]  A. Khachaturyan Elastic Strains during Decomposition of Homogeneous Solid Solutions — Periodic Distribution of Decomposition Products , 1969 .

[27]  Wolfgang Dreyer,et al.  The behavior of a many-particle electrode in a lithium-ion battery , 2011 .

[28]  Hsiao-Ying Shadow Huang,et al.  Strain Accommodation during Phase Transformations in Olivine‐Based Cathodes as a Materials Selection Criterion for High‐Power Rechargeable Batteries , 2007 .

[29]  Y. Meng,et al.  First-principles study of surface properties of LiFePO4: Surface energy, structure, Wulff shape, and surface redox potential , 2007 .

[30]  N. Balsara,et al.  Phase equilibria and the Landau—Ginzburg functional , 1989 .

[31]  Damian Burch,et al.  Size-dependent spinodal and miscibility gaps for intercalation in nanoparticles. , 2009, Nano letters.

[32]  Stéphanie Belin,et al.  An Electrochemical Cell for Operando Study of Lithium Batteries Using Synchrotron Radiation , 2010 .

[33]  John E. Hilliard,et al.  Free Energy of a Nonuniform System. III. Nucleation in a Two‐Component Incompressible Fluid , 1959 .

[34]  Milo R. Dorr,et al.  Anisotropic Phase Boundary Morphology in Nanoscale Olivine Electrode Particles , 2011 .

[35]  W. Craig Carter,et al.  Size-Dependent Lithium Miscibility Gap in Nanoscale Li1 − x FePO4 , 2007 .

[36]  John W. Cahn,et al.  On spinodal decomposition in cubic crystals , 1962 .

[37]  Daniel A. Cogswell,et al.  Suppression of phase separation in LiFePO₄ nanoparticles during battery discharge. , 2011, Nano letters.

[38]  Yu U. Wang,et al.  Phase field microelasticity theory and simulation of multiple voids and cracks in single crystals and polycrystals under applied stress , 2002 .

[39]  Wolfgang Dreyer,et al.  The thermodynamic origin of hysteresis in insertion batteries. , 2010, Nature materials.

[40]  W. Craig Carter,et al.  Overpotential-Dependent Phase Transformation Pathways in Lithium Iron Phosphate Battery Electrodes , 2010 .

[41]  J. Cahn Coherent fluctuations and nucleation in isotropic solids , 1962 .

[42]  Jean-Marie Tarascon,et al.  The existence of a temperature-driven solid solution in LixFePO4 for 0 ≤ x ≤ 1 , 2005 .

[43]  J. L. Dodd,et al.  Phase Diagram of Li_xFePO_4 , 2006 .

[44]  Atsuo Yamada,et al.  Phase Change in Li x FePO4 , 2005 .

[45]  Martin Z. Bazant,et al.  Phase-Transformation Wave Dynamics in LiFePO4 , 2008 .

[46]  J. Waals The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density , 1979 .

[47]  Thomas J. Richardson,et al.  Electron Microscopy Study of the LiFePO4 to FePO4 Phase Transition , 2006 .

[48]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[49]  Alain Mauger,et al.  Study of the Li-insertion/extraction process in LiFePO4/FePO4 , 2009 .

[50]  Masao Yonemura,et al.  Room-temperature miscibility gap in LixFePO4 , 2006, Nature materials.

[51]  A. G. Khachaturi︠a︡n Theory of structural transformations in solids , 1983 .

[52]  G. Meyrick,et al.  Phase Transformations in Metals and Alloys , 1973 .

[53]  Venkat Srinivasan,et al.  Discharge Model for the Lithium Iron-Phosphate Electrode , 2004 .