Interpolation of Inverse Operators for Preconditioning Parameter-Dependent Equations

We propose a method for the construction of preconditioners of parameter-dependent matrices for the solution of large systems of parameter-dependent equations. The proposed method is an interpolation of the matrix inverse based on a projection of the identity matrix with respect to the Frobenius norm. Approximations of the Frobenius norm using random matrices are introduced in order to handle large matrices. The resulting statistical estimators of the Frobenius norm yield quasi-optimal projections that are controlled with high probability. Strategies for the adaptive selection of interpolation points are then proposed for different objectives in the context of projection-based model order reduction methods: the improvement of residual-based error estimators, the improvement of the projection on a given reduced approximation space, and the reuse of computations for sampling-based model order reduction methods.

[1]  I. Babuska,et al.  Solution of stochastic partial differential equations using Galerkin finite element techniques , 2001 .

[2]  B. Khoromskij,et al.  Tensor-structured Galerkin approximation of parametric and stochastic elliptic PDEs , 2010 .

[3]  Roger Ghanem,et al.  Numerical solution of spectral stochastic finite element systems , 1996 .

[4]  Fabien Casenave,et al.  A nonintrusive reduced basis method applied to aeroacoustic simulations , 2014, Adv. Comput. Math..

[5]  Ronald DeVore,et al.  Greedy Algorithms for Reduced Bases in Banach Spaces , 2012, Constructive Approximation.

[6]  Christos Boutsidis,et al.  Improved Matrix Algorithms via the Subsampled Randomized Hadamard Transform , 2012, SIAM J. Matrix Anal. Appl..

[7]  Sivan Toledo,et al.  Randomized algorithms for estimating the trace of an implicit symmetric positive semi-definite matrix , 2011, JACM.

[8]  Hermann G. Matthies,et al.  Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations , 2005 .

[9]  N. Nguyen,et al.  A general multipurpose interpolation procedure: the magic points , 2008 .

[10]  G. Rozza,et al.  On the stability of the reduced basis method for Stokes equations in parametrized domains , 2007 .

[11]  Hermann G. Matthies,et al.  Solving stochastic systems with low-rank tensor compression , 2012 .

[12]  Bernard Chazelle,et al.  The Fast Johnson--Lindenstrauss Transform and Approximate Nearest Neighbors , 2009, SIAM J. Comput..

[13]  Anirban Dasgupta,et al.  Sampling algorithms and coresets for ℓp regression , 2007, SODA '08.

[14]  M. Hutchinson A stochastic estimator of the trace of the influence matrix for laplacian smoothing splines , 1989 .

[15]  Gianluigi Rozza,et al.  Comparison Between Reduced Basis and Stochastic Collocation Methods for Elliptic Problems , 2014, J. Sci. Comput..

[16]  J. Lindenstrauss,et al.  Approximation of zonoids by zonotopes , 1989 .

[17]  Grégory Legrain,et al.  Low-Rank Approximate Inverse for Preconditioning Tensor-Structured Linear Systems , 2013, SIAM J. Sci. Comput..

[18]  Luis González,et al.  Orthogonal Projections of the Identity: Spectral Analysis and Applications to Approximate Inverse Preconditioning , 2006, SIAM Rev..

[19]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[20]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[21]  Jane J. Ye,et al.  Optimizing Condition Numbers , 2009, SIAM J. Optim..

[22]  M. Benzi Preconditioning techniques for large linear systems: a survey , 2002 .

[23]  Wolfgang Dahmen,et al.  Convergence Rates for Greedy Algorithms in Reduced Basis Methods , 2010, SIAM J. Math. Anal..

[24]  Marcus J. Grote,et al.  Parallel Preconditioning with Sparse Approximate Inverses , 1997, SIAM J. Sci. Comput..

[25]  Wolfgang Dahmen,et al.  DOUBLE GREEDY ALGORITHMS: REDUCED BASIS METHODS FOR TRANSPORT DOMINATED PROBLEMS ∗ , 2013, 1302.5072.

[26]  Christian Soize,et al.  Polynomial chaos representation of a stochastic preconditioner , 2005 .

[27]  Catherine Elizabeth Powell,et al.  Efficient Solvers for a Linear Stochastic Galerkin Mixed Formulation of Diffusion Problems with Random Data , 2008, SIAM J. Sci. Comput..

[28]  A. Patera,et al.  A Successive Constraint Linear Optimization Method for Lower Bounds of Parametric Coercivity and Inf-Sup Stability Constants , 2007 .

[29]  Yvon Maday,et al.  Parametric Analytical Preconditioning and its Applications to the Reduced Collocation Methods , 2014, 1403.7273.

[30]  Wolfgang Dahmen,et al.  Adaptive Petrov-Galerkin Methods for First Order Transport Equations , 2011, SIAM J. Numer. Anal..

[31]  Dishi Liu,et al.  To Be or Not to Be Intrusive? The Solution of Parametric and Stochastic Equations - the "Plain Vanilla" Galerkin Case , 2013, SIAM J. Sci. Comput..

[32]  Y. Saad,et al.  An estimator for the diagonal of a matrix , 2007 .

[33]  A. Nouy Recent Developments in Spectral Stochastic Methods for the Numerical Solution of Stochastic Partial Differential Equations , 2009 .

[34]  Joel A. Tropp,et al.  Improved Analysis of the subsampled Randomized Hadamard Transform , 2010, Adv. Data Sci. Adapt. Anal..

[35]  G. Rozza,et al.  Stabilized reduced basis method for parametrized advection-diffusion PDEs , 2014 .

[36]  Lloyd R. Welch,et al.  Lower bounds on the maximum cross correlation of signals (Corresp.) , 1974, IEEE Trans. Inf. Theory.