Cadmium exclusion a key factor in differential Cd-resistance in Thlaspi arvense ecotypes

[1]  S. Gupta,et al.  Safety of food crops on land contaminated with trace elements. , 2011, Journal of the science of food and agriculture.

[2]  G. Mugnozza,et al.  Cadmium accumulation and tolerance in Populus nigra and Salix alba , 2011, Biologia Plantarum.

[3]  K. Yeh,et al.  Differential expression and regulation of iron-regulated metal transporters in Arabidopsis halleri and Arabidopsis thaliana--the role in zinc tolerance. , 2011, The New phytologist.

[4]  M. Wójcik,et al.  Glutathione in adaptation of Arabidopsis thaliana to cadmium stress , 2011, Biologia Plantarum.

[5]  Shin-ichi Nakamura,et al.  Isolation of novel types of Arabidopsis mutants with altered reactions to cadmium: cadmium-gradient agar plates are an effective screen for the heavy metal-related mutants , 2010, Planta.

[6]  I. Cakmak Enrichment of fertilizers with zinc: An excellent investment for humanity and crop production in India. , 2009, Journal of trace elements in medicine and biology : organ of the Society for Minerals and Trace Elements.

[7]  C. Hermans,et al.  Mechanisms to cope with arsenic or cadmium excess in plants. , 2009, Current opinion in plant biology.

[8]  P. Testillano,et al.  Cellular Response of Pea Plants to Cadmium Toxicity: Cross Talk between Reactive Oxygen Species, Nitric Oxide, and Calcium1[W][OA] , 2009, Plant Physiology.

[9]  T. Kinraide Improved scales for metal ion softness and toxicity , 2009, Environmental toxicology and chemistry.

[10]  R. Qiu,et al.  Antioxidative response to Cd in a newly discovered cadmium hyperaccumulator, Arabis paniculata F. , 2008, Chemosphere.

[11]  A. Lux,et al.  Difference in the root structure of hyperaccumulator Thlaspi caerulescens and non-hyperaccumulator Thlaspi arvense , 2008 .

[12]  L. Kochian,et al.  Investigating heavy-metal hyperaccumulation using Thlaspi caerulescens as a model system. , 2008, Annals of botany.

[13]  J M Clarke,et al.  Selection and breeding of plant cultivars to minimize cadmium accumulation. , 2008, The Science of the total environment.

[14]  S. Clemens Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. , 2006, Biochimie.

[15]  L. Kochian,et al.  Characterization of cadmium uptake, translocation and storage in near-isogenic lines of durum wheat that differ in grain cadmium concentration. , 2006, The New phytologist.

[16]  C. Poschenrieder,et al.  Distinctive effects of cadmium on glucosinolate profiles in Cd hyperaccumulator Thlaspi praecox and non-hyperaccumulator Thlaspi arvense , 2006, Plant and Soil.

[17]  Helen C Bowen,et al.  A comparison of the Thlaspi caerulescens and Thlaspi arvense shoot transcriptomes. , 2006, The New phytologist.

[18]  L. Kochian,et al.  Shoot biomass and zinc/cadmium uptake for hyperaccumulator and non-accumulator Thlaspi species in response to growth on a zinc-deficient calcareous soil , 2003 .

[19]  L. M. Sandalio,et al.  Cadmium-induced changes in the growth and oxidative metabolism of pea plants. , 2001, Journal of experimental botany.

[20]  F. J. Corpas,et al.  Cadmium toxicity and oxidative metabolism of pea leaf peroxisomes. , 1999, Free radical research.

[21]  G. Bañuelos,et al.  Phytoremediation of Contaminated Soil and Water , 1999 .

[22]  Z. Krupa,et al.  Cd/Fe Interaction in Higher Plants - Its Consequences for the Photosynthetic Apparatus , 1999, Photosynthetica.

[23]  L. Toppi,et al.  Response to cadmium in higher plants , 1999 .

[24]  H. Schat,et al.  IDENTICAL MAJOR GENE LOCI FOR HEAVY METAL TOLERANCES THAT HAVE INDEPENDENTLY EVOLVED IN DIFFERENT LOCAL POPULATIONS AND SUBSPECIES OF SILENE VULGARIS , 1996, Evolution; international journal of organic evolution.

[25]  A. Baker,et al.  Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J. & C. Presl (Brassicaceae). , 1994, The New phytologist.

[26]  C. Poschenrieder,et al.  Chromium III‐iron interaction in Fe‐deficient and Fe‐sufficient bean plants. I. Growth and nutrient content , 1991 .

[27]  C. Poschenrieder,et al.  Influence of cadmium on water relations, stomatal resistance, and abscisic Acid content in expanding bean leaves. , 1989, Plant physiology.

[28]  J. Verkleij,et al.  Cadmium tolerance and co-tolerance in Silene vulgaris (Moench.) Garcke [=S. cucubalus (L.) Wib.]. , 1989, The New phytologist.

[29]  H. Marschner Mineral Nutrition of Higher Plants , 1988 .

[30]  C. Poschenrieder,et al.  Structural and ultrastructural disorders in cadmium-treated bush bean plants (Phaseolus vulgaris L.). , 1988, The New phytologist.

[31]  P. White,et al.  Root responses to cadmium in the rhizosphere: a review. , 2011, Journal of experimental botany.

[32]  S. McGrath,et al.  Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense , 2000 .

[33]  H. Schat,et al.  Metal-specific pattern of tolerance, uptake, and transport of heavy metals in hyperaccumulating and non-hyperaccumulating metallophytes. , 2000 .

[34]  I. Cakmak,et al.  Concentration of zinc and activity of copper/zinc-superoxide dismutase in leaves of rye and wheat cultivars differing in sensitivity to zinc deficiency , 1997 .

[35]  Juan Barceló,et al.  Cadmium‐, Mangan‐, Eisen‐, Zink‐ und Magnesium‐Gehalte von Bohnenpflanzen (Phaseolus vulgaris L.) in Abhängigkeit von Dauer und Höhe des Cadmium‐Angebotes , 1985 .

[36]  E. Epstein Mineral Nutrition of Plants: Principles and Perspectives , 1972 .