Cutting lemma and Zarankiewicz’s problem in distal structures

We establish a cutting lemma for definable families of sets in distal structures, as well as the optimality of the distal cell decomposition for definable families of sets on the plane in o-minimal expansions of fields. Using it, we generalize the results in Fox et al. (J Eur Math Soc 19(6):1785–1810, 2017 ) on the semialgebraic planar Zarankiewicz problem to arbitrary o-minimal structures, in particular obtaining an o-minimal generalization of the Szemerédi–Trotter theorem.

[1]  Micha Sharir,et al.  Repeated Angles in the Plane and Related Problems , 1992, J. Comb. Theory, Ser. A.

[2]  Deirdre Haskell,et al.  Vapnik-Chervonenkis Density in Some Theories without the Independence Property, II , 2011, Notre Dame J. Formal Log..

[3]  Endre Szemerédi,et al.  Extremal problems in discrete geometry , 1983, Comb..

[4]  W ShorPeter,et al.  Applications of random sampling in computational geometry, II , 1989 .

[5]  Orit E. Raz,et al.  An o-minimal Szemer\'edi-Trotter theorem , 2016 .

[6]  Boris Bukh,et al.  Erdős–Szekeres-type statements: Ramsey function and decidability in dimension $1$ , 2012, 1207.0705.

[7]  Orit E. Raz,et al.  An o-minimal Szemerédi-Trotter theorem , 2016, ArXiv.

[8]  Leonidas J. Guibas,et al.  A Singly Exponential Stratification Scheme for Real Semi-Algebraic Varieties and its Applications , 1991, Theor. Comput. Sci..

[9]  Kenneth L. Clarkson,et al.  Applications of random sampling in computational geometry, II , 1988, SCG '88.

[10]  J. Pach,et al.  A semi-algebraic version of Zarankiewicz's problem , 2014, 1407.5705.

[11]  I. Bárány LECTURES ON DISCRETE GEOMETRY (Graduate Texts in Mathematics 212) , 2003 .

[12]  Sergei Starchenko,et al.  Regularity lemma for distal structures , 2015, Journal of the European Mathematical Society.

[13]  Pierre Simon,et al.  Externally definable sets and dependent pairs II , 2012, 1202.2650.

[14]  Pierre Simon,et al.  Distal and non-distal NIP theories , 2011, Ann. Pure Appl. Log..