NONPARAMETRIC ESTIMATION OF NATURAL SELECTION ON A QUANTITATIVE TRAIT USING MARK‐RECAPTURE DATA

Abstract Assessing natural selection on a phenotypic trait in wild populations is of primary importance for evolutionary ecologists. To cope with the imperfect detection of individuals inherent to monitoring in the wild, we develop a nonparametric method for evaluating the form of natural selection on a quantitative trait using mark‐recapture data. Our approach uses penalized splines to achieve flexibility in exploring the form of natural selection by avoiding the need to specify an a priori parametric function. If needed, it can help in suggesting a new parametric model. We employ Markov chain Monte Carlo sampling in a Bayesian framework to estimate model parameters. We illustrate our approach using data for a wild population of sociable weavers (Philetairus socius) to investigate survival in relation to body mass. In agreement with previous parametric analyses, we found that lighter individuals showed a reduction in survival. However, the survival function was not symmetric, indicating that body mass might not be under stabilizing selection as suggested previously.

[1]  M. Conroy,et al.  Analysis and Management of Animal Populations , 2002 .

[2]  Callahan,et al.  Using path analysis to measure natural selection , 2000 .

[3]  Res Altwegg,et al.  PATTERNS OF NATURAL SELECTION ON SIZE AT METAMORPHOSIS IN WATER FROGS , 2003, Evolution; international journal of organic evolution.

[4]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[5]  P. J. Green,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[6]  William A. Link,et al.  Occam's shadow: Levels of analysis in evolutionary ecology--where to next? , 2002 .

[7]  Byron J. T. Morgan,et al.  Bayesian Animal Survival Estimation , 2000 .

[8]  J. Kingsolver FITNESS CONSEQUENCES OF SEASONAL POLYPHENISM IN WESTERN WHITE BUTTERFLIES , 1995, Evolution; international journal of organic evolution.

[9]  C. Crainiceanu,et al.  Semiparametric Regression in Capture–Recapture Modeling , 2006, Biometrics.

[10]  L. Kruuk,et al.  When environmental variation short-circuits natural selection , 2003 .

[11]  Sylvia Richardson,et al.  Inference and monitoring convergence , 1995 .

[12]  M. Rausher THE MEASUREMENT OF SELECTION ON QUANTITATIVE TRAITS: BIASES DUE TO ENVIRONMENTAL COVARIANCES BETWEEN TRAITS AND FITNESS , 1992, Evolution; international journal of organic evolution.

[13]  Carl J. Schwarz,et al.  Estimating migration rates using tag-recovery data , 1993 .

[14]  Roger Pradel,et al.  Efficient profile-likelihood confidence intervals for capture-recapture models , 2005 .

[15]  S. J. Arnold,et al.  VISUALIZING MULTIVARIATE SELECTION , 1989, Evolution; international journal of organic evolution.

[16]  Ciprian M. Crainiceanu,et al.  Bayesian Analysis for Penalized Spline Regression Using WinBUGS , 2005 .

[17]  Kenneth H. Pollock,et al.  Estimating Transition Probabilities for Stage‐Based Population Projection Matrices Using Capture‐Recapture Data , 1992 .

[18]  R. B. Srygley,et al.  Effects of weight loading on flight performance and survival of palatable Neotropical Anartia fatima , 2000 .

[19]  B. Ripley,et al.  Semiparametric Regression: Preface , 2003 .

[20]  Jerald B. Johnson,et al.  Model selection in ecology and evolution. , 2004, Trends in ecology & evolution.

[21]  Rita Covas,et al.  Stabilizing selection on body mass in the sociable weaver Philetairus socius , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[22]  J. Willis MEASURES OF PHENOTYPIC SELECTION ARE BIASED BY PARTIAL INBREEDING , 1996, Evolution; international journal of organic evolution.

[23]  B. Faivre,et al.  Stabilizing natural selection on the early expression of a secondary sexual trait in a passerine bird , 2004, Journal of evolutionary biology.

[24]  Marco Festa-Bianchet,et al.  AGE‐SPECIFIC SURVIVAL IN FIVE POPULATIONS OF UNGULATES: EVIDENCE OF SENESCENCE , 1999 .

[25]  David R. Anderson,et al.  Modeling Survival and Testing Biological Hypotheses Using Marked Animals: A Unified Approach with Case Studies , 1992 .

[26]  K. Pollock The use of auxiliary variables in capture-recapture modelling: An overview , 2002 .

[27]  C J Schwarz,et al.  An Extension of the Cormack–Jolly–Seber Model for Continuous Covariates with Application to Microtus pennsylvanicus , 2006, Biometrics.

[28]  THE CONTRIBUTION OF PHENOTYPIC PLASTICITY TO ADAPTATION IN LACERTA VIVIPARA , 2001, Evolution; international journal of organic evolution.

[29]  Burt,et al.  Natural selection in the wild. , 2000, Trends in ecology & evolution.

[30]  Olivier Gimenez,et al.  Parameter Redundancy in Multistate Capture‐Recapture Models , 2003 .

[31]  R. Mauricio,et al.  Reducing bias in the measurement of selection. , 1997, Trends in ecology & evolution.

[32]  John R. Skalski,et al.  Inferential properties of an individual-based survival model using release-recapture data: Sample size, validity and power , 1995 .

[33]  Joel G. Kingsolver,et al.  Path analyses of selection. , 1991, Trends in ecology & evolution.

[34]  Dolph Schluter,et al.  ESTIMATING THE FORM OF NATURAL SELECTION ON A QUANTITATIVE TRAIT , 1988, Evolution; international journal of organic evolution.

[35]  D. Berrigan,et al.  Strength and tempo of directional selection in the wild , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[36]  E D Brodie,et al.  Visualizing and quantifying natural selection. , 1995, Trends in ecology & evolution.

[37]  D. Ruppert Selecting the Number of Knots for Penalized Splines , 2002 .

[38]  J. M. Hoekstra,et al.  The Strength of Phenotypic Selection in Natural Populations , 2001, The American Naturalist.

[39]  Peter Green,et al.  Markov chain Monte Carlo in Practice , 1996 .

[40]  D. Reznick,et al.  Comparative Studies of Senescence in Natural Populations of Guppies , 2004, The American Naturalist.

[41]  J. Nichols,et al.  Individual quality, survival variation and patterns of phenotypic selection on body condition and timing of nesting in birds , 2005, Oecologia.

[42]  J. Kingsolver,et al.  ESTIMATING SELECTION ON QUANTITATIVE TRAITS USING CAPTURE‐RECAPTURE DATA , 1995, Evolution; international journal of organic evolution.

[43]  Douglas W. Nychka,et al.  Exploring Fitness Surfaces , 1994, The American Naturalist.

[44]  T. Mitchell-Olds,et al.  REGRESSION ANALYSIS OF NATURAL SELECTION: STATISTICAL INFERENCE AND BIOLOGICAL INTERPRETATION , 1987, Evolution; international journal of organic evolution.

[45]  J. Clobert,et al.  Capture-recapture and evolutionary ecology: A difficult wedding? , 1995 .

[46]  K. Burnham,et al.  Program MARK: survival estimation from populations of marked animals , 1999 .

[47]  Michael J. Conroy,et al.  Analysis of individual- and time-specific covariate effects on survival of Serinus serinus in north-eastern Spain , 2002 .

[48]  Alan E. Gelfand,et al.  Model choice: A minimum posterior predictive loss approach , 1998, AISTATS.

[49]  Bill Shipley,et al.  Cause and Correlation in Biology: A User''s Guide to Path Analysis , 2016 .

[50]  W. Cleveland,et al.  Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting , 1988 .

[51]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[52]  A. N. Arnason,et al.  The estimation of population size, migration rates and survival in a stratified population , 1973, Researches on Population Ecology.

[53]  David Ruppert,et al.  Semiparametric Regression: Author Index , 2003 .

[54]  R. Tibshirani,et al.  Generalized Additive Models , 1991 .

[55]  R. Lande QUANTITATIVE GENETIC ANALYSIS OF MULTIVARIATE EVOLUTION, APPLIED TO BRAIN:BODY SIZE ALLOMETRY , 1979, Evolution; international journal of organic evolution.

[56]  S. J. Arnold,et al.  THE MEASUREMENT OF SELECTION ON CORRELATED CHARACTERS , 1983, Evolution; international journal of organic evolution.

[57]  J. Freidman,et al.  Multivariate adaptive regression splines , 1991 .