Barium enrichment in the non-spinose planktic foraminifer, Globorotalia truncatulinoides

[1]  P. Hull,et al.  Vertical distribution of planktic foraminifera through an oxygen minimum zone: how assemblages and test morphology reflect oxygen concentrations , 2021, Biogeosciences.

[2]  C. Benitez‐Nelson,et al.  Evidence for rapid trace element alteration of planktic foraminiferal shells from the Panama Basin: Manganese adsorption during vertical transport , 2020 .

[3]  F. Jorissen,et al.  Evaluation and application of foraminiferal element/calcium ratios: Assessing riverine fluxes and environmental conditions during sapropel S1 in the Southeastern Mediterranean , 2019, Marine Micropaleontology.

[4]  M. Cotte,et al.  Chemical Heterogeneity of Mg, Mn, Na, S, and Sr in Benthic Foraminiferal Calcite , 2019, Front. Earth Sci..

[5]  B. Hönisch,et al.  Submicron sodium banding in cultured planktic foraminifera shells , 2019, Geochimica et Cosmochimica Acta.

[6]  T. Quinn,et al.  Considerations for Globigerinoides ruber (White and Pink) Paleoceanography: Comprehensive Insights From a Long‐Running Sediment Trap , 2019, Paleoceanography and Paleoclimatology.

[7]  B. Hönisch,et al.  Ba/Ca ratios in the non-spinose planktic foraminifer Neogloboquadrina dutertrei: Evidence for an organic aggregate microhabitat , 2018, Geochimica et Cosmochimica Acta.

[8]  F. Jorissen,et al.  Experimental calibration of manganese incorporation in foraminiferal calcite , 2018, Geochimica et Cosmochimica Acta.

[9]  B. Rosenheim,et al.  Environmental controls on the geochemistry of Globorotalia truncatulinoides in the Gulf of Mexico: Implications for paleoceanographic reconstructions , 2018, Marine Micropaleontology.

[10]  K. Shirai,et al.  Chamber formation and trace element distribution in the calcite walls of laboratory cultured planktonic foraminifera (Globigerina bulloides and Globigerinoides ruber) , 2018 .

[11]  F. Jorissen,et al.  Mn∕Ca intra- and inter-test variability in the benthic foraminifer Ammonia tepida , 2018 .

[12]  S. Eggins,et al.  Oxygen isotope geochemistry of Laurentide ice-sheet meltwater across Termination I , 2017 .

[13]  T. Hill,et al.  Relationships Between Temperature, pH, and Crusting on Mg/Ca Ratios in Laboratory‐Grown Neogloboquadrina Foraminifera , 2017 .

[14]  G. Nehrke,et al.  Ba incorporation in benthic foraminifera , 2017 .

[15]  A. Gagnon,et al.  Link between light-triggered Mg-banding and chamber formation in the planktic foraminifera Neogloboquadrina dutertrei , 2017, Nature Communications.

[16]  S. Eggins,et al.  Trace element proxies for surface ocean conditions: A synthesis of culture calibrations with planktic foraminifera , 2016 .

[17]  J. Chanton,et al.  Sustained deposition of contaminants from the Deepwater Horizon spill , 2016, Proceedings of the National Academy of Sciences.

[18]  H. Kunz,et al.  Exploring Globorotalia truncatulinoides coiling ratios as a proxy for subtropical gyre dynamics in the northwestern Atlantic Ocean during Late Pleistocene Ice Ages , 2016 .

[19]  G. Kontakiotis,et al.  Biotic and geochemical (δ 18 O, δ 13 C, Mg/Ca, Ba/Ca) responses of Globigerinoides ruber morphotypes to upper water column variations during the last deglaciation, Gulf of Mexico , 2015 .

[20]  H. Stoll,et al.  LA‐ICPMS Ba/Ca analyses of planktic foraminifera from the Bay of Bengal: Implications for late Pleistocene orbital control on monsoon freshwater flux , 2015 .

[21]  G. Reichart,et al.  Profiling planktonic foraminiferal crust formation , 2015 .

[22]  S. Eggins,et al.  Optimizing LA-ICP-MS analytical procedures for elemental depth profiling of foraminifera shells , 2015 .

[23]  D. Joung,et al.  Dissolved barium behavior in Louisiana Shelf waters affected by the Mississippi/Atchafalaya River mixing zone , 2014 .

[24]  W. Broecker,et al.  Delayed Holocene Reappearance of G. menardii , 2014 .

[25]  G. Schmiedl,et al.  The pace of East African monsoon evolution during the Holocene , 2014 .

[26]  M. Kučera,et al.  Comparison of Ba/Ca and as freshwater proxies: A multi-species core-top study on planktonic foraminifera from the vicinity of the Orinoco River mouth , 2013 .

[27]  P. deMenocal,et al.  Reconstructing the upper water column thermal structure in the Atlantic Ocean , 2013 .

[28]  H. Spero,et al.  LA‐ICP‐MS depth profiling perspective on cleaning protocols for elemental analyses in planktic foraminifers , 2013 .

[29]  M. Balmaseda,et al.  Evaluation of the ECMWF ocean reanalysis system ORAS4 , 2013 .

[30]  Julene P. Marr,et al.  Trace element variability in crust-bearing and non crust-bearing Neogloboquadrina incompta, P--D intergrade and Globoconella inflata from the Southwest Pacific Ocean: Potential paleoceanographic implications , 2013 .

[31]  A. Paytan,et al.  Barite in the ocean – occurrence, geochemistry and palaeoceanographic applications , 2012 .

[32]  D. Clague,et al.  Variations in seawater Sr/Ca recorded in deep‐sea bamboo corals , 2012 .

[33]  J. Lynch‐Stieglitz,et al.  Florida Straits deglacial temperature and salinity change: Implications for tropical hydrologic cycle variability during the Younger Dryas , 2011 .

[34]  D. Günther,et al.  Determination of Reference Values for NIST SRM 610–617 Glasses Following ISO Guidelines , 2011 .

[35]  J. Hellstrom,et al.  Iolite: Freeware for the visualisation and processing of mass spectrometric data , 2011 .

[36]  S. Eggins,et al.  Planktic foraminifers as recorders of seawater Ba/Ca , 2011 .

[37]  Gernot Nehrke,et al.  Heavy metal incorporation in foraminiferal calcite: results from multi-element enrichment culture experiments with Ammonia tepida , 2010 .

[38]  R. James,et al.  Environmental versus biomineralization controls on the intratest variation in the trace element composition of the planktonic foraminifera G. inflata and G. scitula , 2009 .

[39]  J. Duplessy,et al.  Evidence for calcification depth change of Globorotalia truncatulinoides between deglaciation and Holocene in the Western Atlantic Ocean , 2009 .

[40]  R. Schneider,et al.  155,000 Years of West African Monsoon and Ocean Thermal Evolution , 2007, Science.

[41]  J. Duplessy,et al.  Deep‐dwelling foraminifera as thermocline temperature recorders , 2007 .

[42]  J. Lynch‐Stieglitz,et al.  Surface currents in the western North Atlantic during the Last Glacial Maximum , 2007 .

[43]  S. Eggins,et al.  Characterization of Mg/Ca distributions in planktonic foraminifera species by electron microprobe mapping , 2005 .

[44]  D. Lea,et al.  Effects of temperature on Mg/Ca in neogloboquadrinid shells determined by live culturing , 2005 .

[45]  C. Pelejero,et al.  Identification and removal of Mn‐Mg‐rich contaminant phases on foraminiferal tests: Implications for Mg/Ca past temperature reconstructions , 2005 .

[46]  F. Morel,et al.  Barium uptake and adsorption in diatoms , 2005 .

[47]  J. M. Hall,et al.  Ba/Ca in benthic foraminifera: Thermocline and middepth circulation in the North Atlantic during the last glaciation , 2004 .

[48]  H. Elderfield,et al.  A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry , 2003 .

[49]  S. Eggins,et al.  Mg/Ca variation in planktonic foraminifera tests: implications for reconstructing palaeo-seawater temperature and habitat migration , 2003 .

[50]  R. Ganeshram,et al.  An experimental investigation of Barite formation in seawater , 2003 .

[51]  Henry Elderfield,et al.  Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time series , 2003 .

[52]  J. Lynch‐Stieglitz,et al.  Persistence of Gulf Stream separation during the Last Glacial Period: Implications for current separation theories , 2003 .

[53]  F. Jorissen,et al.  Single foraminiferal test chemistry records the marine environment , 2003 .

[54]  D. Hodell,et al.  Southern Ocean upper water column structure over the last 140 kyr with emphasis on the glacial terminations , 2002 .

[55]  K. Cobb,et al.  Origin of marine barite deposits: Sr and S isotope characterization , 2002 .

[56]  Baohua Li,et al.  Globorotalia truncatulinoides as indicator of upper-ocean thermal structure during the Quaternary: evidence from the South China Sea and Okinawa Trough , 2000 .

[57]  C. Jeandel,et al.  The marine barite saturation state of the world's oceans , 1999 .

[58]  H. Niebler,et al.  Planktonic foraminifera as recorders of past surface-water stratification , 1997 .

[59]  G. P. Lohmann A model for variation in the chemistry of planktonic foraminifera due to secondary calcification and selective dissolution , 1995 .

[60]  J. I. Martínez,et al.  Late Pleistocene palaeocenography of the Tasman Sea: Implications for the dynamics of the warm pool in the western Pacific , 1994 .

[61]  D. Lea,et al.  Assessing the reliability of paleochemical tracers: barium uptake in the shells of planktonic foraminifera , 1994 .

[62]  D. Lea Constraints on the alkalinity and circulation of glacial circumpolar deep water from benthic foraminiferal barium , 1993 .

[63]  D. Lea,et al.  Experimental determination of barium uptake in shells of the planktonic foraminifera Orbulina universa at 22°C , 1992 .

[64]  E. Suess,et al.  Barium in Deep‐Sea Sediment: A Geochemical Proxy for Paleoproductivity , 1992 .

[65]  G. P. Lohmann Increasing seasonal upwelling in the subtropical South Atlantic over the past 700,000 yrs: Evidence from deep-living planktonic foraminifera , 1992 .

[66]  E. Boyle,et al.  Barium in planktonic foraminifera , 1991 .

[67]  C. Hemleben,et al.  Temperature and salinity limits for growth and survival of some planktonic foraminifers in laboratory cultures , 1990 .

[68]  Peter N. Schweitzer,et al.  Globorotalia truncatulinoides' Growth and chemistry as probes of the past thermocline: 1. Shell size , 1990 .

[69]  E. Boyle,et al.  Barium content of benthic foraminifera controlled by bottom-water composition , 1989, Nature.

[70]  A. Alldredge,et al.  Can Microscale Chemical Patches Persist in the Sea? Microelectrode Study of Marine Snow, Fecal Pellets , 1987, Science.

[71]  Robert Ehrlich,et al.  Morphometric and stable isotopic evidence for subpopulations of Globorotalia truncatulinoides , 1985 .

[72]  G. P. Lohmann,et al.  Equatorward migration of Globorotalia truncatulinoides ecophenotypes through the Late Pleistocene: Gradual evolution or ocean change? , 1983, Paleobiology.

[73]  J. Erez,et al.  Comparison of isotopic composition of planktonic foraminifera in plankton tows, sediment traps and sediments , 1981 .

[74]  F. Dehairs,et al.  DISCRETE SUSPENDED PARTICLES OF BARITE AND THE BARIUM CYCLE IN THE OPEN OCEAN , 1980 .

[75]  J. Kennett,et al.  Globorotalia truncatulinoides as a Paleo-oceanographic Index , 1968, Science.

[76]  Allan W. H. B�,et al.  Shell Growth and Structure of Planktonic Foraminifera , 1964, Science.

[77]  S. Eggins,et al.  Timing and mechanism for intratest Mg/Ca variability in a living planktic foraminifer , 2015 .

[78]  B. Metcalfe,et al.  Reconstructing the depth of the permanent thermocline through the morphology and geochemistry of the deep dwelling planktonic foraminifer Globorotalia truncatulinoides , 2015 .

[79]  A. Shanks,et al.  Reducing microzones and sulfide production in marine snow , 1993 .

[80]  Alice L. Alldredge,et al.  Characteristics, dynamics and significance of marine snow , 1988 .

[81]  DOUGLAS F. Williams,et al.  Shape changes inGloborotalia truncatulinoides as a function of ontogeny and paleobiogeography in the Southern Ocean , 1987 .