Behavioral avoidance of pathogenic bacteria by Caenorhabditis elegans.

The simple animal host Caenorhabditis elegans utilizes its nervous system to respond to diverse microbial cues, and can engage in a protective behavioral avoidance response to environmental pathogens. This behavior bears hallmarks of an immune response, with sensors and recognition systems that trigger a protective response following a learning experience. Neuronal circuits required for aversive learning have been defined, revealing conserved signaling modules with dual roles in immunity and neuronal responses to pathogenic bacteria. Identification of natural polymorphisms that modulate avoidance behavior has enabled an improved understanding of host-microbe interactions at the molecular level. We review here these findings and discuss how the microbial cues and host responses defined in C. elegans may provide insight into evolutionarily diverse host-microbe interactions.

[1]  D. Newman,et al.  Caenorhabditis elegans NPR-1–mediated behaviors are suppressed in the presence of mucoid bacteria , 2011, Proceedings of the National Academy of Sciences.

[2]  Rajesh Ranganathan,et al.  C. elegans Locomotory Rate Is Modulated by the Environment through a Dopaminergic Pathway and by Experience through a Serotonergic Pathway , 2000, Neuron.

[3]  Leo X. Liu,et al.  Addresses: 1Laboratoire de Génétique et , 2022 .

[4]  S. Nurrish,et al.  Behavioral and Immune Responses to Infection Require Gαq- RhoA Signaling in C. elegans , 2012, PLoS pathogens.

[5]  Cori Bargmann,et al.  Detection and avoidance of a natural product from the pathogenic bacterium Serratia marcescens by Caenorhabditis elegans , 2007, Proceedings of the National Academy of Sciences.

[6]  Cornelia I Bargmann,et al.  A Distributed Chemosensory Circuit for Oxygen Preference in C. elegans , 2006, PLoS biology.

[7]  Cori Bargmann Chemosensation in C. elegans. , 2006, WormBook : the online review of C. elegans biology.

[8]  H. Horvitz,et al.  Effects of starvation and neuroactive drugs on feeding in Caenorhabditis elegans. , 1990, The Journal of experimental zoology.

[9]  Jennifer L. Tenor,et al.  A conserved Toll‐like receptor is required for Caenorhabditis elegans innate immunity , 2008, EMBO reports.

[10]  R. Aunger,et al.  Serotonin--a link between disgust and immunity? , 2007, Medical hypotheses.

[11]  Markus Knaden,et al.  A Conserved Dedicated Olfactory Circuit for Detecting Harmful Microbes in Drosophila , 2012, Cell.

[12]  Cori Bargmann,et al.  Multigenic Natural Variation Underlies Caenorhabditis elegans Olfactory Preference for the Bacterial Pathogen Serratia marcescens , 2013, G3: Genes, Genomes, Genetics.

[13]  H. Horvitz,et al.  Serotonin and octopamine in the nematode Caenorhabditis elegans. , 1982, Science.

[14]  M. D. Bono,et al.  Natural variation in a neural globin tunes oxygen sensing in wild Caenorhabditis elegans , 2009, Nature.

[15]  Heon-ick Ha,et al.  Dissecting the Signaling Mechanisms Underlying Recognition and Preference of Food Odors , 2014, The Journal of Neuroscience.

[16]  Leon Avery,et al.  Dietary choice behavior in Caenorhabditis elegans , 2006, Journal of Experimental Biology.

[17]  Valerie Reinke,et al.  p38 MAPK Regulates Expression of Immune Response Genes and Contributes to Longevity in C. elegans , 2006, PLoS genetics.

[18]  John F. Cryan,et al.  Brain–Gut–Microbe Communication in Health and Disease , 2011, Front. Physio..

[19]  Guigen Li,et al.  Caenorhabditis elegans Senses Bacterial Autoinducers , 2006, Applied and Environmental Microbiology.

[20]  Y. Kohara,et al.  TLR-independent control of innate immunity in Caenorhabditis elegans by the TIR domain adaptor protein TIR-1, an ortholog of human SARM , 2004, Nature Immunology.

[21]  R. Cassada,et al.  The dauerlarva, a post-embryonic developmental variant of the nematode Caenorhabditis elegans. , 1975, Developmental biology.

[22]  J. Clemente,et al.  The Impact of the Gut Microbiota on Human Health: An Integrative View , 2012, Cell.

[23]  Cori Bargmann Beyond the connectome: How neuromodulators shape neural circuits , 2012, BioEssays : news and reviews in molecular, cellular and developmental biology.

[24]  G. Ruvkun,et al.  Inactivation of Conserved C. elegans Genes Engages Pathogen- and Xenobiotic-Associated Defenses , 2012, Cell.

[25]  T. Kooistra,et al.  Tissue-specific activities of an immune signaling module regulate physiological responses to pathogenic and nutritional bacteria in C. elegans. , 2009, Cell host & microbe.

[26]  Leonid Kruglyak,et al.  Long-Range Regulatory Polymorphisms Affecting a GABA Receptor Constitute a Quantitative Trait Locus (QTL) for Social Behavior in Caenorhabditis elegans , 2012, PLoS genetics.

[27]  Cori Bargmann,et al.  Natural Variation in a Neuropeptide Y Receptor Homolog Modifies Social Behavior and Food Response in C. elegans , 1998, Cell.

[28]  M. Félix,et al.  Population dynamics and habitat sharing of natural populations of Caenorhabditis elegans and C. briggsae , 2012, BMC Biology.

[29]  Leonid Kruglyak,et al.  Catecholamine receptor polymorphisms affect decision-making in C. elegans , 2011, Nature.

[30]  A. Bowie,et al.  Innate antiviral signalling in the central nervous system. , 2014, Trends in immunology.

[31]  Aravinthan D. T. Samuel,et al.  Functional Organization of a Neural Network for Aversive Olfactory Learning in Caenorhabditis elegans , 2010, Neuron.

[32]  Dennis H Kim,et al.  Natural Polymorphisms in C. elegans HECW-1 E3 Ligase Affect Pathogen Avoidance Behaviour , 2011, Nature.

[33]  H. Schulenburg,et al.  Natural variation in the response of Caenorhabditis elegans towards Bacillus thuringiensis , 2004, Parasitology.

[34]  P. Kuwabara,et al.  A novel bacterial pathogen, Microbacterium nematophilum, induces morphological change in the nematode C. elegans , 2000, Current Biology.

[35]  F. Ausubel,et al.  Requirement for a conserved Toll/interleukin-1 resistance domain protein in the Caenorhabditis elegans immune response. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Cornelia I. Bargmann,et al.  Pathogenic bacteria induce aversive olfactory learning in Caenorhabditis elegans , 2005, Nature.

[37]  R. Greenspan,et al.  Natural behavior polymorphism due to a cGMP-dependent protein kinase of Drosophila. , 1997, Science.

[38]  Leonid Kruglyak,et al.  A Polymorphism in npr-1 Is a Behavioral Determinant of Pathogen Susceptibility in C. elegans , 2009, Science.

[39]  V. Tremaroli,et al.  Functional interactions between the gut microbiota and host metabolism , 2012, Nature.

[40]  J. Hodgkin,et al.  Mos1 Mutagenesis Reveals a Diversity of Mechanisms Affecting Response of Caenorhabditis elegans to the Bacterial Pathogen Microbacterium nematophilum , 2007, Genetics.

[41]  James H. Thomas,et al.  The Caenorhabditis chemoreceptor gene families , 2008, BMC Biology.

[42]  Yun Zhang,et al.  DBL-1, a TGF-β, is essential for Caenorhabditis elegans aversive olfactory learning , 2012, Proceedings of the National Academy of Sciences.

[43]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[44]  Frederick M. Ausubel,et al.  A Conserved p38 MAP Kinase Pathway in Caenorhabditis elegans Innate Immunity , 2002, Science.

[45]  Evan Z. Macosko,et al.  Quantitative Mapping of a Digenic Behavioral Trait Implicates Globin Variation in C. elegans Sensory Behaviors , 2009, Neuron.

[46]  M. Hendricks,et al.  Two Insulin-like Peptides Antagonistically Regulate Aversive Olfactory Learning in C. elegans , 2013, Neuron.