New Crustal Framework in the Amazon Craton Based on Geophysical Data: Evidences of Deep East-West Trending Suture Zones

The Tapajós mineral province (TMP), in the Brazilian Amazon Craton, comprises NW-SE Paleoproterozoic insular magmatic arcs accreted to the Carajás Archean Province (CAP). We present new geological and geophysical data pointing toward a different evolutionary model for the TMP. Results obtained from magnetic data indicate that NNW-SSE trending structures occur at shallow crustal levels. Furthermore, an E-W structural framework shows up at 15.4 km depth, in disagreement with the accreted island arc orientation. These E-W structures are associated with north-dipping blocks, reflecting ductile compressive tectonics, similar to the tectonic setting found in the CAP. We interpret these E-W structures of the TMP as the continuity westwards of similar structures from the CAP, under the Paleoproterozoic volcanic rocks of the Uatumã Supergroup. Based on this evidence, we propose that Paleoproterozoic arcs have been formed in an Archean active continental margin, instead of in island arcs. This novel tectonic setting for the TMP has significant implications for the tectonic evolution and the metallogenic potential of the southern portion of the Amazon craton, particularly for Paleoproterozoic magmatic-hydrothermal (epithermal and porphyry) precious and base metal systems.

[1]  B. D. B. Neves,et al.  The geologic evolution of South America during the Archean and Early Proterozoic , 1982 .

[2]  C. Tassinari,et al.  A review of the geochronology of the Amazonian Craton: Tectonic implications , 1989 .

[3]  Ted Urquhart Decorrugation of Enhanced Magnetic Field Maps , 1988 .

[4]  C. Juliani,et al.  Well-preserved Late Paleoproterozoic volcanic centers in the São Félix do Xingu region, Amazonian Craton, Brazil , 2010 .

[5]  B. Minty,et al.  Simple micro-levelling for aeromagnetic data , 1991 .

[6]  M. Vasquez,et al.  Geologia e recursos minerais do estado do Pará , 2008 .

[7]  C. Tassinari,et al.  Principais eventos de acreção continental no cráton Amazonico baseados em idade modelo Sm-Nd, calculada em evoluções de estágio único e estágio duplo , 1997 .

[8]  F. Cook,et al.  Crustal geometry and tectonic evolution of the Archean crystalline basement beneath the southern Alberta Plains, from new seismic reflection and potential-field studies , 2000 .

[9]  R. Blakely Potential theory in gravity and magnetic applications , 1996 .

[10]  W. Teixeira,et al.  Proterozoic accretionary belts in the Amazonian Craton , 2007 .

[11]  C. Tassinari,et al.  Evolução tectônica da Amazônia com base nos dados geocronológicos , 1979 .

[12]  C. Busby Extensional and Transtensional Continental ARC Basins: Case Studies from the Southwestern United States , 2012 .

[13]  B. D. B. Neves,et al.  The Paranapanema Lithospheric Block: Its Importance for Proterozoic (Rodinia, Gondwana) Supercontinent Theories. , 2005 .

[14]  M. Macambira,et al.  Geochronological provinces of the Amazonian Craton , 1999 .

[15]  L. Snee,et al.  Paleoproterozoic high-sulfidation mineralization in the Tapajós gold province, Amazonian Craton, Brazil: geology, mineralogy, alunite argon age, and stable-isotope constraints , 2005 .

[16]  C. Tassinari O mapa geocronológico do Cráton Amazônico no Brasil: revisão dos dados isotópicos , 1996 .

[17]  J. Phillips Geosoft eXecutables (GX's) Developed by the U.S. Geological Survey, Version 2.0, with Notes on GX Development from Fortran Code , 2007 .

[18]  G. Carrasco‐Núñez,et al.  Space-time patterns of Cenozoic arc volcanism in central Mexico: From the Sierra Madre Occidental to the Mexican Volcanic Belt , 1999 .

[19]  L. Monteiro,et al.  High-K calc-alkaline to A-type fissure-controlled volcano-plutonism of the São Félix do Xingu region, Amazonian craton, Brazil: Exclusively crustal sources or only mixed Nd model ages? , 2011 .

[20]  J. D. Winter An Introduction to Igneous and Metamorphic Petrology , 2001 .

[21]  D. Groves,et al.  Gold deposits of the Tapajós and Alta Floresta Domains, Tapajós–Parima orogenic belt, Amazon Craton, Brazil , 2001, Mineralium Deposita.

[22]  J. Phillips Designing matched bandpass and azimuthal filters for the separation of potential-field anomalies by source region and source type , 2001 .

[23]  A. Spector,et al.  STATISTICAL MODELS FOR INTERPRETING AEROMAGNETIC DATA , 1970 .

[24]  Z. Lindenmayer,et al.  U-Pb geochronology of Archean magmatism and basement reactivation in the Carajás area, Amazon shield, Brazil , 1991 .

[25]  Steven D. Sheriff,et al.  Matched filter separation of magnetic anomalies caused by scattered surface debris at archaeological sites , 2010 .

[26]  João B. C. Silva Reduction to the pole as an inverse problem and its application to low-latitude anomalies , 1986 .

[27]  W. Dickinson Anatomy and global context of the North American Cordillera , 2009 .

[28]  N. Ussami,et al.  Gravity map of Brazil: 1. Representation of free‐air and Bouguer Anomalies , 1993 .

[29]  W. Teixeira,et al.  The position of the Amazonian Craton in supercontinents , 2009 .

[30]  R. Holdsworth,et al.  The anatomy of shallow-crustal transpressional structures: insights from the Archaean Carajás fault zone, Amazon, Brazil , 2000 .

[31]  Y. Hasui,et al.  Brazilian structural provinces: An introduction , 1981 .

[32]  D. Groves,et al.  Timing and evolution of multiple Paleoproterozoic magmatic arcs in the Tapajós Domain, Amazon Craton: constraints from SHRIMP and TIMS zircon, baddeleyite and titanite U-Pb geochronology , 2004 .

[33]  M. Nabighian,et al.  The historical development of the magnetic method in exploration , 2005 .