Spatial stream modeling of Louisiana Waterthrush (Parkesia motacilla) foraging substrate and aquatic prey in a watershed undergoing shale gas development

[1]  P. Wood,et al.  Patterns in benthic macroinvertebrate assemblages in an active region of unconventional shale-gas development in the western Appalachian Plateau of West Virginia, USA , 2022, Environmental Monitoring and Assessment.

[2]  A. Welsh,et al.  Epigenetic response of Louisiana Waterthrush Parkesia motacilla to shale gas development , 2020 .

[3]  P. Wood,et al.  Louisiana Waterthrush (Parkesia motacilla) survival and site fidelity in an area undergoing shale gas development , 2019, The Wilson Journal of Ornithology.

[4]  P. Wood,et al.  Demographic characteristics of an avian predator, Louisiana Waterthrush (Parkesia motacilla), in response to its aquatic prey in a Central Appalachian USA watershed impacted by shale gas development , 2018, PloS one.

[5]  T. Nuttle,et al.  Stream acidification and reduced aquatic prey availability are associated with dietary shifts in an obligate riparian Neotropical migratory songbird , 2018, PeerJ.

[6]  P. Wood,et al.  Demographic response of Louisiana Waterthrush, a stream obligate songbird of conservation concern, to shale gas development , 2018, The Condor.

[7]  J. V. Ver Hoef,et al.  The Torgegram for Fluvial Variography: Characterizing Spatial Dependence on Stream Networks , 2017 .

[8]  D. Winkler,et al.  Omega-3 long-chain polyunsaturated fatty acids support aerial insectivore performance more than food quantity , 2016, Proceedings of the National Academy of Sciences.

[9]  M. Brittingham,et al.  Bird community response to Marcellus shale gas development , 2016 .

[10]  P. Wood,et al.  Shale gas development effects on the songbird community in a central Appalachian forest , 2016 .

[11]  T. Nuttle,et al.  Molecular analysis of nestling diet in a long-distance Neotropical migrant, the Louisiana Waterthrush (Parkesia motacilla) , 2016, The Auk.

[12]  P. Wood,et al.  Louisiana Waterthrush and Benthic Macroinvertebrate Response to Shale Gas Development , 2016 .

[13]  G. Bortolotti,et al.  Carry‐over effects provide linkages across the annual cycle of a Neotropical migratory bird, the Louisiana Waterthrush Parkesia motacilla , 2016 .

[14]  L. Krometis,et al.  Habitat and water quality as drivers of ecological system health in Central Appalachia , 2015 .

[15]  Sally Entrekin,et al.  Stream macroinvertebrate communities across a gradient of natural gas development in the Fayetteville Shale. , 2015, The Science of the total environment.

[16]  Judith D. Toms,et al.  Evidence from two shale regions that a riparian songbird accumulates metals associated with hydraulic fracturing , 2015 .

[17]  A. M. Rushworth,et al.  Validation and comparison of geostatistical and spline models for spatial stream networks , 2015, Environmetrics.

[18]  Erin E. Peterson,et al.  Improving the predictive power of spatial statistical models of stream macroinvertebrates using weighted autocovariance functions , 2014, Environ. Model. Softw..

[19]  M. Brittingham,et al.  Ecological risks of shale oil and gas development to wildlife, aquatic resources and their habitats. , 2014, Environmental science & technology.

[20]  Jay M. Ver Hoef,et al.  Applications of spatial statistical network models to stream data , 2014 .

[21]  Jeffrey S. Evans,et al.  Shale Gas, Wind and Water: Assessing the Potential Cumulative Impacts of Energy Development on Ecosystem Services within the Marcellus Play , 2014, PloS one.

[22]  Jay M. Ver Hoef,et al.  STARS: An ArcGIS Toolset Used to Calculate the Spatial Information Needed to Fit Spatial Statistical Models to Stream Network Data , 2014 .

[23]  Paul F. Ziemkiewicz,et al.  Scenario analysis predicts context-dependent stream response to landuse change in a heavily mined central Appalachian watershed , 2013, Freshwater Science.

[24]  Alastair Rushworth,et al.  Flexible regression models over river networks , 2013, Journal of the Royal Statistical Society. Series C, Applied statistics.

[25]  Joseph H. A. Guillaume,et al.  Characterising performance of environmental models , 2013, Environ. Model. Softw..

[26]  G. Pond,et al.  Calibration and validation of a regionally and seasonally stratified macroinvertebrate index for West Virginia wadeable streams , 2013, Environmental Monitoring and Assessment.

[27]  Inderjit,et al.  Community Impacts of Prosopis juliflora Invasion: Biogeographic and Congeneric Comparisons , 2012, PloS one.

[28]  B. Johnson,et al.  Rapid expansion of natural gas development poses a threat to surface waters , 2011 .

[29]  A. Rodewald,et al.  Movements of Fledgling Ovenbirds (Seiurus aurocapilla) and Worm-Eating Warblers (Helmitheros vermivorum) within and Beyond the Natal Home Range , 2010 .

[30]  Erin E. Peterson,et al.  A Moving Average Approach for Spatial Statistical Models of Stream Networks , 2010 .

[31]  Jay M Ver Hoef,et al.  A mixed-model moving-average approach to geostatistical modeling in stream networks. , 2010, Ecology.

[32]  Alain F. Zuur,et al.  A protocol for data exploration to avoid common statistical problems , 2010 .

[33]  B. Mattsson,et al.  Louisiana Waterthrush (Parkesia motacilla) , 2009, Birds of the World.

[34]  Krista Latta What Determines Success? Breeding Habitat Characteristics of the Louisiana Waterthrush (Seiurus motacilla) , 2009 .

[35]  Michael P Strager,et al.  A spatially explicit framework for quantifying downstream hydrologic conditions. , 2009, Journal of environmental management.

[36]  B. Mattsson,et al.  Multiscale Analysis of the Effects of Rainfall Extremes on Reproduction by an Obligate Riparian Bird in Urban and Rural Landscapes , 2009 .

[37]  S. Latta,et al.  Effects of acidification on the breeding ecology of a stream-dependent songbird, the Louisiana waterthrush (Seiurus motacilla) , 2008 .

[38]  P. S. Lake,et al.  Macroinvertebrate diversity in headwater streams: a review , 2008 .

[39]  P. Mulholland,et al.  Landuse legacies and small streams: identifying relationships between historical land use and contemporary stream conditions , 2008, Journal of the North American Benthological Society.

[40]  J. Harding,et al.  The linkage between riparian predators and aquatic insects across a stream‐resource spectrum , 2007 .

[41]  R. G. Davies,et al.  Methods to account for spatial autocorrelation in the analysis of species distributional data : a review , 2007 .

[42]  L. Macdonald,et al.  Influence of Headwater Streams on Downstream Reaches in Forested Areas , 2007, Forest Science.

[43]  P. Diggle,et al.  Model‐based geostatistics , 2007 .

[44]  Mary C. Freeman,et al.  Hydrologic Connectivity and the Contribution of Stream Headwaters to Ecological Integrity at Regional Scales 1 , 2007 .

[45]  J. Hoef,et al.  Spatial statistical models that use flow and stream distance , 2006, Environmental and Ecological Statistics.

[46]  B. Mattsson,et al.  Louisiana waterthrushes (Seiurus motacilla) and habitat assessments as cost-effective indicators of instream biotic integrity , 2006 .

[47]  T. Bailey Spatial Analysis: A Guide for Ecologists , 2006 .

[48]  N. Cressie,et al.  Spatial prediction on a river network , 2006 .

[49]  R. Sidle,et al.  Understanding Processes and Downstream Linkages of Headwater Systems , 2002 .

[50]  L. Jackson,et al.  BIRD GUILDS AS INDICATORS OF ECOLOGICAL CONDITION IN THE CENTRAL APPALACHIANS , 2000 .

[51]  Frederick J. Swanson,et al.  Flood Disturbance in a Forested Mountain Landscape Interactions of land use and floods , 1998 .

[52]  Noel A Cressie,et al.  Statistics for Spatial Data, Revised Edition. , 1994 .

[53]  P. Legendre Spatial Autocorrelation: Trouble or New Paradigm? , 1993 .

[54]  L. Gray Response of Insectivorous Birds to Emerging Aquatic Insects in Riparian Habitats of a Tallgrass Prairie Stream , 1993 .

[55]  Neil D. Burgess,et al.  Bird Census Techniques , 1992 .

[56]  L. W. Gysel,et al.  Avian Nest Dispersion and Fledging Success in Field‐Forest Ecotones , 1978 .

[57]  William M. Shields,et al.  The Effect of Time of Day on Avian Census Results , 1977 .

[58]  H. Akaike A new look at the statistical model identification , 1974 .

[59]  S. Svenson,et al.  Recommendations for an international standard for a mapping method in bird census work , 1969 .

[60]  R. L. Shreve Infinite Topologically Random Channel Networks , 1967, The Journal of Geology.

[61]  J. I The Design of Experiments , 1936, Nature.

[62]  J. Hoef,et al.  Scalable population estimates using spatial-stream-network (SSN) models, fish density surveys, and national geospatial database frameworks for streams , 2017 .

[63]  J. A. Barton In-Stream Leaf Decomposition as an Indicator of Marcellus Shale Impairment Across a Land Use Gradient , 2016 .

[64]  Tae-Soo Chon,et al.  Stream biomonitoring using macroinvertebrates around the globe: a comparison of large-scale programs , 2014, Environmental Monitoring and Assessment.

[65]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[66]  Julio E. Sánchez†,et al.  A Preliminary Study of Riparian Songbirds in Costa Rica, with Emphasis on Wintering Louisiana Waterthrushes , 2005 .

[67]  Robyn K. Whipp Food Webs at the Landscape Level , 2005 .

[68]  W. Link,et al.  The North American Breeding Bird Survey Results and Analysis , 1997 .

[69]  B. W. Sweeney Effects of Streamside Vegetation on Macroinvertebrate Communities of White Clay Creek in Eastern North America , 1993 .