Coupling Ferroelectric to colloidal Nanocrystals as a Generic Strategy to Engineer the Carrier Density Landscape

The design of infrared nanocrystals‐based (NCs) photodiodes faces a major challenge related to the identification of barriers with a well‐suited band alignment or strategy to finely control the carrier density. Here, this study explores a general complementary approach where the carrier density control is achieved by coupling an NC layer to a ferroelectric material. The up‐and‐down change in ferroelectric polarization directly impacts the NC electronic structure, resulting in the formation of a lateral pn junction. This effect is uncovered directly using nano X‐ray photoemission spectroscopy, which shows a relative energy shift of 115 meV of the NC photoemission signal over the two different up‐ and down‐polarized ferroelectric regions, a shift as large as the open circuit value obtained in the diode stack. The performance of this pn junction reveals enhanced responsivity and reduced noise that lead to a factor 40 increase in the detectivity value.

[1]  Menglu Chen,et al.  High-operating-temperature mid-infrared photodetectors via quantum dot gradient homojunction , 2023, Light: Science & Applications.

[2]  P. Lecoeur,et al.  Optical reading of multistate nonvolatile oxide memories based on the switchable ferroelectric photovoltaic effect , 2022, Applied Physics Letters.

[3]  A. Ouerghi,et al.  Visualizing Giant Ferroelectric Gating Effects in Large-Scale WSe2/BiFeO3 Heterostructures. , 2022, Nano letters.

[4]  C. Dupuis,et al.  Helmholtz Resonator Applied to Nanocrystal-Based Infrared Sensing. , 2022, Nano letters.

[5]  A. Ouerghi,et al.  Extended Short-Wave Photodiode Based on CdSe/HgTe/Ag2Te Stack with High Internal Efficiency , 2022, The Journal of Physical Chemistry C.

[6]  Qianchuan Zhao,et al.  Ultra-sensitive polarization-resolved black phosphorus homojunction photodetector defined by ferroelectric domains , 2022, Nature Communications.

[7]  C. Sirtori,et al.  Broadband Enhancement of Mid‐Wave Infrared Absorption in a Multi‐Resonant Nanocrystal‐Based Device , 2022, Advanced Optical Materials.

[8]  L. Desplanque,et al.  Colloidal II–VI—Epitaxial III–V heterostructure: A strategy to expand InGaAs spectral response , 2022, Applied Physics Letters.

[9]  M. Rosticher,et al.  Correlating Structure and Detection Properties in HgTe Nanocrystal Films. , 2021, Nano letters.

[10]  C. Delerue,et al.  Infrared photoconduction at the diffusion length limit in HgTe nanocrystal arrays , 2021, Nature Communications.

[11]  E. Lhuillier,et al.  Mercury Chalcogenide Quantum Dots: Material Perspective for Device Integration. , 2021, Chemical reviews.

[12]  M. Alexe,et al.  Emerging Opportunities for 2D Semiconductor/Ferroelectric Transistor‐Structure Devices , 2021, Advanced materials.

[13]  S. Bals,et al.  Ferroelectric Gating of Narrow Band-Gap Nanocrystal Arrays with Enhanced Light–Matter Coupling , 2021, ACS Photonics.

[14]  A. Houtepen,et al.  Permanent Electrochemical Doping of Quantum Dots and Semiconductor Polymers , 2020, Advanced Functional Materials.

[15]  A. Rogach,et al.  Solution Processed Hybrid Polymer: HgTe Quantum Dot Phototransistor with High Sensitivity and Fast Infrared Response up to 2400 nm at Room Temperature , 2020, Advanced science.

[16]  A. Ouerghi,et al.  Reconfigurable 2D/0D p-n Graphene/HgTe Nanocrystal Heterostructure for Infrared Detection. , 2020, ACS nano.

[17]  Matthew M. Ackerman,et al.  HgTe colloidal quantum dot photodiodes for extended short-wave infrared detection , 2020, Applied Physics Letters.

[18]  Xinran Wang,et al.  MoTe2 p–n Homojunctions Defined by Ferroelectric Polarization , 2020, Advanced materials.

[19]  P. Guyot-Sionnest,et al.  Quantum dot solids showing state-resolved band-like transport , 2020, Nature Materials.

[20]  Guangjian Wu,et al.  A gate-free MoS2 phototransistor assisted by ferroelectrics , 2019, Journal of Semiconductors.

[21]  H. Tsang,et al.  Integrated Plasmonic Infrared Photodetector Based on Colloidal HgTe Quantum Dots , 2019, Advanced Materials Technologies.

[22]  Nan Zhang,et al.  Reconfigurable two-dimensional optoelectronic devices enabled by local ferroelectric polarization , 2019, Nature Communications.

[23]  E. Lacaze,et al.  HgTe Nanocrystal Inks for Extended Short‐Wave Infrared Detection , 2019, Advanced Optical Materials.

[24]  Matthew M. Ackerman,et al.  Dual-band infrared imaging using stacked colloidal quantum dot photodiodes , 2019, Nature Photonics.

[25]  Matthew M. Ackerman,et al.  Fast and Sensitive Colloidal Quantum Dot Mid-Wave Infrared Photodetectors. , 2018, ACS nano.

[26]  Fan Yang,et al.  High‐Efficiency PbS Quantum‐Dot Solar Cells with Greatly Simplified Fabrication Processing via “Solvent‐Curing” , 2018, Advanced materials.

[27]  Y. Chu,et al.  A gate-free monolayer WSe2 pn diode , 2018, Nature Communications.

[28]  A. Sinitskii,et al.  Polarization‐Dependent Electronic Transport in Graphene/Pb(Zr,Ti)O3 Ferroelectric Field‐Effect Transistors , 2017 .

[29]  S. Kim,et al.  Improved efficiency of ferroelectric Pb(Zr, Ti)O3 (PZT) based photovoltaic device with colloidal quantum dots , 2016 .

[30]  M. Kovalenko,et al.  Double Gate PbS Quantum Dot Field‐Effect Transistors for Tuneable Electrical Characteristics , 2016 .

[31]  M. Tang,et al.  Ultrasensitive and Broadband MoS2 Photodetector Driven by Ferroelectrics , 2015, Advanced materials.

[32]  Moungi G. Bawendi,et al.  Improved performance and stability in quantum dot solar cells through band alignment engineering , 2014, Nature materials.

[33]  P. Guyot-Sionnest,et al.  Synthesis of colloidal HgTe quantum dots for narrow mid-IR emission and detection. , 2011, Journal of the American Chemical Society.

[34]  X. Hong,et al.  Unusual Resistance Hysteresis in n-Layer Graphene Field Effect Transistors Fabricated on Ferroelectric Pb(Zr_0.2Ti_0.8)O_3 , 2010, 1007.1240.

[35]  Thomas A. Kennedy,et al.  Doping semiconductor nanocrystals , 2005, Nature.

[36]  Per Capita,et al.  About the authors , 1995, Machine Vision and Applications.

[37]  Dago M. de Leeuw,et al.  Physics of organic ferroelectric field-effect transistors , 2012 .