Simple Choreographic Motions of N Bodies: A Preliminary Study
暂无分享,去创建一个
Carles Simó | Richard Montgomery | Alain Chenciner | A. Chenciner | R. Montgomery | J. Gerver | C. Simó | Joseph Gerver
[1] Carles Simó,et al. New Families of Solutions in N -Body Problems , 2001 .
[2] Carles Simo. Periodic orbits of the planar N-body problem with equal masses and all bodies on the same path , 2001 .
[3] M. Born. The Restless Universe , 1935 .
[4] I. Davies,et al. Classical periodic solutions of the equal-mass 2n-body problem, 2n ion problem and the n-electron atom problem , 1983 .
[5] D. Heggie. A new outcome of binary–binary scattering , 2000 .
[6] Richard Montgomery,et al. The N-body problem, the braid group, and action-minimizing periodic solutions , 1998 .
[7] Richard Montgomery,et al. A remarkable periodic solution of the three-body problem in the case of equal masses , 2000, math/0011268.
[8] J. Stoer,et al. Introduction to Numerical Analysis , 2002 .
[9] Richard S. Palais,et al. The principle of symmetric criticality , 1979 .
[10] I. Stewart. Symmetry methods in collisionless many-body problems , 1996 .
[11] Moore,et al. Braids in classical dynamics. , 1993, Physical review letters.
[12] M. Hénon. A family of periodic solutions of the planar three-body problem, and their stability , 1976 .
[13] A. Chenciner,et al. Minima de L'intégrale D'action du Problème Newtoniende 4 Corps de Masses Égales Dans R3: Orbites 'Hip-Hop' , 2000 .