Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications.

Thin-film crystalline silicon (c-Si) solar cells with light-trapping structures can enhance light absorption within the semiconductor absorber layer and reduce material usage. Here we demonstrate that an inverted nanopyramid light-trapping scheme for c-Si thin films, fabricated at wafer scale via a low-cost wet etching process, significantly enhances absorption within the c-Si layer. A broadband enhancement in absorptance that approaches the Yablonovitch limit (Yablonovitch, E. J. Opt. Soc. Am.1987, 72, 899-907 ) is achieved with minimal angle dependence. We also show that c-Si films less than 10 μm in thickness can achieve absorptance values comparable to that of planar c-Si wafers thicker than 300 μm, amounting to an over 30-fold reduction in material usage. Furthermore the surface area increases by a factor of only 1.7, which limits surface recombination losses in comparison with other nanostructured light-trapping schemes. These structures will not only significantly curtail both the material and processing cost of solar cells but also allow the high efficiency required to enable viable c-Si thin-film solar cells in the future.

[1]  Zongfu Yu,et al.  Fundamental limit of nanophotonic light trapping in solar cells , 2010, Proceedings of the National Academy of Sciences.

[2]  O. Urakawa,et al.  Small - , 2007 .

[3]  Dennis G. Hall,et al.  Absorption enhancement in silicon‐on‐insulator waveguides using metal island films , 1996 .

[4]  Yi Cui,et al.  Wafer-scale silicon nanopillars and nanocones by Langmuir-Blodgett assembly and etching , 2008 .

[5]  Yunjie Yan,et al.  Aligned single-crystalline Si nanowire arrays for photovoltaic applications. , 2005, Small.

[6]  Zongfu Yu,et al.  Semiconductor nanowire optical antenna solar absorbers. , 2010, Nano letters.

[7]  Gang Chen,et al.  Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications. , 2007, Nano letters.

[8]  R. Brendel Thin-film crystalline silicon mini-modules using porous Si for layer transfer , 2004 .

[9]  M. Green,et al.  Light trapping properties of pyramidally textured surfaces , 1987 .

[10]  J. Pendry,et al.  Calculation of photon dispersion relations. , 1992, Physical review letters.

[11]  E. Yablonovitch Statistical ray optics , 1982 .

[12]  Otto L Muskens,et al.  Design of light scattering in nanowire materials for photovoltaic applications. , 2008, Nano letters.

[13]  M. Green The path to 25% silicon solar cell efficiency: History of silicon cell evolution , 2009 .

[14]  J. Rogers,et al.  Flexible concentrator photovoltaics based on microscale silicon solar cells embedded in luminescent waveguides. , 2011, Nature communications.

[15]  G. Kovacs,et al.  Bulk micromachining of silicon , 1998, Proc. IEEE.

[16]  Murat Okandan,et al.  Microsystems enabled photovoltaics: 14.9% efficient 14 μm thick crystalline silicon solar cell , 2011 .

[17]  Nathan S Lewis,et al.  Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. , 2010, Nature materials.

[18]  Gang Chen,et al.  Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics. , 2010, Nano letters.

[19]  J. Rand,et al.  Silicon Nanowire Solar Cells , 2007 .

[20]  Mark L. Schattenburg,et al.  Large‐area achromatic interferometric lithography for 100 nm period gratings and grids , 1996 .

[21]  Gang Chen,et al.  Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells. , 2010, Nano letters.

[22]  Chang‐Hwan Choi,et al.  Tunable two-mirror interference lithography system for wafer-scale nanopatterning. , 2011, Optics letters.

[23]  S. Esterby American Society for Testing and Materials , 2006 .

[24]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[25]  M. Green,et al.  Surface plasmon enhanced silicon solar cells , 2007 .

[26]  Peidong Yang,et al.  Light trapping in silicon nanowire solar cells. , 2010, Nano letters.

[27]  Harry A Atwater,et al.  Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings. , 2011, Nano letters.

[28]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[29]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[30]  M. Cetron,et al.  Biodiesel production : a preliminary study from Jatropha Curcas , 2013 .

[31]  Nathan S. Lewis,et al.  High-performance Si microwire photovoltaics , 2011 .

[32]  H. Tompkins,et al.  Analysis of silicon oxynitrides with spectroscopic ellipsometry and Auger spectroscopy, compared to analyses by Rutherford backscattering spectrometry and Fourier transform infrared spectroscopy , 1999 .

[33]  Xin Wang,et al.  High-performance silicon nanohole solar cells. , 2010, Journal of the American Chemical Society.