A hypoplastic macroelement model for a caisson foundation in sand under monotonic and cyclic loadings

[1]  Hendrik Sturm,et al.  Modelling of soil-structure-interaction for flexible caissons for offshore wind turbines , 2019, Ocean Engineering.

[2]  B. Li,et al.  Effects of lime treatment on the geotechnical properties of dredged mud , 2018, Marine Georesources & Geotechnology.

[3]  Z. Yin,et al.  Novel SPH SIMSAND–Based Approach for Modeling of Granular Collapse , 2018, International Journal of Geomechanics.

[4]  C. Tamagnini,et al.  A hypoplastic macroelement formulation for single batter piles in sand , 2018 .

[5]  Hans Petter Jostad,et al.  A macro-element for integrated time domain analyses representing bucket foundations for offshore wind turbines , 2018 .

[6]  Yin‐Fu Jin,et al.  Identifying parameters of easily crushable sand and application to offshore pile driving , 2018 .

[7]  Yin-Fu Jin,et al.  Optimization techniques for identifying soil parameters in geotechnical engineering: Comparative study and enhancement , 2018 .

[8]  Yin-Fu Jin,et al.  A new hybrid real-coded genetic algorithm and its application to parameters identification of soils , 2017 .

[9]  Gudmund Reidar Eiksund,et al.  A macro model for shallow foundations on granular soils describing non-linear foundation behavior , 2017 .

[10]  Hongwei Huang,et al.  An efficient optimization method for identifying parameters of soft structured clay by an enhanced genetic algorithm and elastic–viscoplastic model , 2017 .

[11]  Yin-Fu Jin,et al.  Numerical Analysis of a Suction Bucket Penetrating in Sand with a Combined Lagrangian – SPH Approach , 2017 .

[12]  Shui-Long Shen,et al.  Selection of sand models and identification of parameters using an enhanced genetic algorithm , 2016 .

[13]  Sandra Escoffier,et al.  A hypoplastic macroelement for single vertical piles in sand subject to three-dimensional loading conditions , 2016 .

[14]  Konstantinos Karapiperis,et al.  Generalized failure envelope for caisson foundations in cohesive soil: Static and dynamic loading , 2015 .

[15]  G. Gazetas,et al.  Static and cyclic undrained response of square embedded foundations , 2015 .

[16]  Lars Bo Ibsen,et al.  Modelling the drained response of bucket foundations for offshore wind turbines under general monotonic and cyclic loading , 2015 .

[17]  N. Cheng Force-resultant models for shallow foundation systems and their implementation in the analysis of soil-structure interactions , 2015 .

[18]  Aligi Foglia Bucket foundations under lateral cyclic loading: Submitted for the degree of doctor of philosophy , 2015 .

[19]  Sandra Escoffier,et al.  Numerical study of the 3D failure envelope of a single pile in sand , 2014 .

[20]  Kim André Larsen,et al.  Calibration of Failure Criteria for Bucket Foundations on Drained Sand under General Loading , 2014 .

[21]  Wang Haijun,et al.  Bearing behavior of wide-shallow bucket foundation for offshore wind turbines in drained silty sand , 2014 .

[22]  Mark Cassidy,et al.  A plasticity model for spudcan foundations in soft clay , 2014 .

[23]  Lars Bo Ibsen,et al.  Adaptive plasticity model for bucket foundations , 2014 .

[24]  C. Tamagnini,et al.  Implementation of a 6-dof hypoplastic macroelement in a finite element code , 2013 .

[25]  Roberto Paolucci,et al.  A macro‐element model for non‐linear soil–shallow foundation–structure interaction under seismic loads: theoretical development and experimental validation on large scale tests , 2012 .

[26]  Alain Pecker,et al.  A macroelement formulation for shallow foundations on cohesive and frictional soils , 2011 .

[27]  Mark Randolph,et al.  Offshore Geotechnical Engineering , 2011 .

[28]  Panagiotis Kotronis,et al.  A macro-element to simulate 3D soil–structure interaction considering plasticity and uplift , 2009 .

[29]  Guy T. Houlsby,et al.  AN EXPERIMENTAL STUDY OF THE DRAINED CAPACITY OF SUCTION CAISSON FOUNDATIONS UNDER MONOTONIC LOADING FOR OFFSHORE APPLICATIONS , 2009 .

[30]  Diana Salciarini,et al.  A hypoplastic macroelement model for shallow foundations under monotonic and cyclic loads , 2009 .

[31]  Mark Fraser Bransby,et al.  The undrained capacity of skirted strip foundations under combined loading , 2009 .

[32]  Sivapalan Gajan,et al.  Contact Interface Model for Shallow Foundations Subjected to Combined Cyclic Loading , 2009 .

[33]  Masahiro Shirato,et al.  NUMERICAL SIMULATION OF MODEL TESTS OF PIER-SHALLOW FOUNDATION SYSTEMS SUBJECTED TO EARTHQUAKE LOADS USING AN ELASTO-UPLIFT-PLASTIC MACRO ELEMENT , 2008 .

[34]  S. Gourvenec Effect of embedment on the undrained capacity of shallow foundations under general loading , 2008 .

[35]  Charisis Chatzigogos,et al.  Macroelement modeling of shallow foundations , 2008, 0802.0425.

[36]  Lars Bo Ibsen Implementation of a new Foundations Concept for Offshore Wind Farms , 2008 .

[37]  Ross W. Boulanger,et al.  Physical and Numerical Modeling of Nonlinear Cyclic Load-Deformation Behavior of Shallow Foundations Supporting Rocking Shear Walls , 2007 .

[38]  Mark Randolph,et al.  A plasticity model describing caisson behaviour in clay , 2006 .

[39]  Mark Cassidy,et al.  Investigating six-degree-of-freedom loading of shallow foundations on sand , 2006 .

[40]  Mark Cassidy,et al.  The behaviour of spudcan footings on clay subjected to combined cyclic loading , 2006 .

[41]  Guy T. Houlsby,et al.  The theoretical modelling of a suction caisson foundation using hyperplasticity theory , 2005 .

[42]  G. Houlsby,et al.  Assessing Novel Foundation Options for Offshore Wind Turbines , 2005 .

[43]  Guy T. Houlsby,et al.  Moment loading of caissons installed in saturated sand , 2005 .

[44]  Lam Nguyen-Sy The theoretical modelling of circular shallow foundation for offshore wind turbines , 2005 .

[45]  Mark Cassidy,et al.  Development and application of force resultant models describing jack-up foundation behaviour , 2004 .

[46]  F. Villalobos SUCTION CAISSON FOUNDATIONS FOR OFFSHORE WIND TURBINES , 2004 .

[47]  G. Houlsby,et al.  Foundations for offshore wind turbines , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[48]  Guy T. Houlsby,et al.  Modelling the behaviour of circular footings under combined loading on loose carbonate sand , 2002 .

[49]  Alain Pecker,et al.  MODELLING OF NONLINEAR DYNAMIC BEHAVIOUR OF A SHALLOW STRIP FOUNDATION WITH MACRO-ELEMENT , 2002 .

[50]  Mark Cassidy,et al.  A plasticity model for the behaviour of footings on sand under combined loading , 2002 .

[51]  Y. Le Pape,et al.  Application of thermodynamics to the global modelling of shallow foundations on frictional material , 2001 .

[52]  Alain Pecker,et al.  Cyclic macro‐element for soil–structure interaction: material and geometrical non‐linearities , 2001 .

[53]  Guy T. Houlsby,et al.  Combined loading of spudcan foundations on clay: numerical modelling , 2001 .

[54]  Gioacchino Viggiani,et al.  A review of two different approaches to hypoplasticity , 2000 .

[55]  Guido Gottardi,et al.  Plastic response of circular footings on sand under general planar loading , 1999 .

[56]  I. Herle,et al.  Hypoplastic model for cohesionless soils with elastic strain range , 1997 .

[57]  Roberto Paolucci,et al.  Simplified evaluation of earthquake induced permanent displacements of shallow foundations , 1997 .

[58]  R. Nova,et al.  SETTLEMENTS OF SHALLOW FOUNDATIONS ON SAND: GEOMETRICAL EFFECTS , 1997 .

[59]  R. Nova,et al.  Settlements of shallow foundations on sand , 1991 .

[60]  Dimitrios Kolymbas,et al.  An outline of hypoplasticity , 1991, Archive of Applied Mechanics.

[61]  G.J.M. Schotman The Effects of Displacements on the Stability of Jackup Spud-Can Foundations , 1989 .