Newton Methods for the Optimal Control of Closed Quantum Spin Systems
暂无分享,去创建一个
Alfio Borzì | Daniel Wachsmuth | Gunther Dirr | Gabriele Ciaramella | A. Borzì | G. Dirr | D. Wachsmuth | G. Ciaramella
[1] Yvon Maday,et al. Monotonic time-discretized schemes in quantum control , 2006, Numerische Mathematik.
[2] Andrei A. Agrachev,et al. An estimation of the controllability time for single-input systems on compact Lie Groups , 2006 .
[3] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[4] Yvon Maday,et al. Monotonic Parareal Control for Quantum Systems , 2007, SIAM J. Numer. Anal..
[5] Herschel Rabitz,et al. A RAPID MONOTONICALLY CONVERGENT ITERATION ALGORITHM FOR QUANTUM OPTIMAL CONTROL OVER THE EXPECTATION VALUE OF A POSITIVE DEFINITE OPERATOR , 1998 .
[6] Domenico D'Alessandro,et al. Controllability of One Spin and Two Interacting Spins , 2003, Math. Control. Signals Syst..
[7] Navin Khaneja,et al. On the Stochastic Control of Quantum Ensembles , 2000 .
[8] A. Siegert,et al. Magnetic Resonance for Nonrotating Fields , 1940 .
[9] Stefan Volkwein,et al. Formulation and numerical solution of finite-level quantum optimal control problems , 2008 .
[10] Uwe Helmke,et al. The dynamics of open quantum systems: accessibility results , 2007 .
[11] Kazimierz Malanowski,et al. CONVERGENCE OF THE LAGRANGE-NEWTON METHOD FOR OPTIMAL CONTROL PROBLEMS , 2004 .
[12] U. Helmke,et al. Optimization and Dynamical Systems , 1994, Proceedings of the IEEE.
[13] G. Bodenhausen,et al. Principles of nuclear magnetic resonance in one and two dimensions , 1987 .
[14] E. Süli,et al. An introduction to numerical analysis , 2003 .
[15] Alfio Borzì,et al. Computational Optimization of Systems Governed by Partial Differential Equations , 2012, Computational science and engineering.
[16] Domenico D'Alessandro,et al. The Lie algebra structure and controllability of spin systems , 2002 .
[17] H. Sussmann,et al. Control systems on Lie groups , 1972 .
[18] Claudio Altafini,et al. Controllability of quantum mechanical systems by root space decomposition of su(N) , 2002 .
[19] Marlis Hochbruck,et al. On Magnus Integrators for Time-Dependent Schrödinger Equations , 2003, SIAM J. Numer. Anal..
[20] A. Borzì. Quantum optimal control using the adjoint method , 2012 .
[21] Axel Kröner,et al. Semi-Smooth Newton Methods for Optimal Control of the Dynamical Lamé System with Control Constraints , 2013 .
[22] Herschel Rabitz,et al. Accelerated monotonic convergence of optimal control over quantum dynamics. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.
[23] D K Smith,et al. Numerical Optimization , 2001, J. Oper. Res. Soc..
[24] David J. Tannor,et al. Loading a Bose-Einstein condensate onto an optical lattice: An application of optimal control theory to the nonlinear Schrödinger equation , 2002 .
[25] Uwe Helmke,et al. Lie Theory for Quantum Control , 2008 .
[26] Karl Kunisch,et al. Optimal control for elliptic systems with pointwise euclidean norm constraints on the controls , 2013, Math. Program..
[27] Stefan Ulbrich,et al. Optimization with PDE Constraints , 2008, Mathematical modelling.
[28] A. Borzì,et al. Computational techniques for a quantum control problem with H1-cost , 2008 .
[29] Richard R. Ernst,et al. Product operator formalism for the description of NMR pulse experiments , 1984 .
[30] O. W. Sørensen,et al. Polarization transfer experiments in high-resolution NMR spectroscopy , 1989 .
[31] Michael Ulbrich,et al. Semismooth Newton Methods for Operator Equations in Function Spaces , 2002, SIAM J. Optim..
[32] A. L. Approach,et al. Controllability Aspects of The Lindblad-Kossakowski Master Equation , 2009 .
[33] J. Cavanagh. Protein NMR Spectroscopy: Principles and Practice , 1995 .
[34] Stefan Volkwein,et al. A Globalized Newton Method for the Accurate Solution of a Dipole Quantum Control Problem , 2009, SIAM J. Sci. Comput..
[35] A. I. Solomon,et al. Controllability of Quantum Systems , 2003 .
[36] David J. Tannor,et al. Control of Photochemical Branching: Novel Procedures for Finding Optimal Pulses and Global Upper Bounds , 1992 .
[37] David J. Tannor,et al. Optimal control with accelerated convergence: Combining the Krotov and quasi-Newton methods , 2011 .
[38] L. Vandersypen,et al. NMR techniques for quantum control and computation , 2004, quant-ph/0404064.
[39] Eduardo D. Sontag,et al. Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .
[40] Luigi Grippo,et al. Metodi di ottimizzazione non vincolata , 2011 .
[41] R. Brockett,et al. Time optimal control in spin systems , 2000, quant-ph/0006114.
[42] A. Gruslys,et al. Comparing, optimizing, and benchmarking quantum-control algorithms in a unifying programming framework , 2010, 1011.4874.
[43] Ivan I. Maximov,et al. A smoothing monotonic convergent optimal control algorithm for nuclear magnetic resonance pulse sequence design. , 2010, The Journal of chemical physics.
[44] Domenico D'Alessandro,et al. Notions of controllability for bilinear multilevel quantum systems , 2003, IEEE Trans. Autom. Control..
[45] S. Glaser,et al. Second order gradient ascent pulse engineering. , 2011, Journal of magnetic resonance.
[46] Lamberto Cesari,et al. Optimization-Theory And Applications , 1983 .
[47] Alfio Borzì,et al. QUCON: A fast Krylov-Newton code for dipole quantum control problems , 2010, Computer Physics Communications.
[48] Julien Salomon,et al. A stable toolkit method in quantum control , 2008 .
[49] H. Sussmann. The “Bang-Bang” Problem for Certain Control Systems in $GL(n,R)$ , 1972 .
[50] Burkhard Luy,et al. Exploring the limits of broadband excitation and inversion pulses. , 2004, Journal of magnetic resonance.
[51] B. Hall. Lie Groups, Lie Algebras, and Representations: An Elementary Introduction , 2004 .
[52] F. Tröltzsch. Optimal Control of Partial Differential Equations: Theory, Methods and Applications , 2010 .
[53] E B Lee,et al. Foundations of optimal control theory , 1967 .
[54] Hard,et al. The complete homogeneous master equation for a heteronuclear two-spin system in the basis of cartesian product operators , 1998, Journal of magnetic resonance.
[55] Timo O. Reiss,et al. Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. , 2005, Journal of magnetic resonance.
[56] Roger W. Brockett,et al. Erratum: Sub-Riemannian geometry and time optimal control of three spin systems: Quantum gates and coherence transfer [Phys. Rev. A 65, 032301 (2002)] , 2003 .
[57] Navin Khaneja,et al. Sub-Riemannian geometry and time optimal control of three spin systems: Quantum gates and coherence transfer , 2002 .
[58] Navin Khaneja,et al. Cartan decomposition of SU(2n) and control of spin systems , 2001 .
[59] V. Jurdjevic. Geometric control theory , 1996 .
[60] Karl Kunisch,et al. Semismooth Newton Methods for Optimal Control of the Wave Equation with Control Constraints , 2011, SIAM J. Control. Optim..
[61] Ilya Kuprov,et al. Spinach--a software library for simulation of spin dynamics in large spin systems. , 2011, Journal of magnetic resonance.
[62] Christiane P Koch,et al. Monotonically convergent optimization in quantum control using Krotov's method. , 2010, The Journal of chemical physics.
[63] Dionisis Stefanatos,et al. Relaxation-optimized transfer of spin order in Ising spin chains (6 pages) , 2005 .
[64] Uwe Helmke,et al. Spin Dynamics: A Paradigm for Time Optimal Control on Compact Lie Groups , 2006, J. Glob. Optim..