Newton Methods for the Optimal Control of Closed Quantum Spin Systems

An efficient and robust computational framework for solving closed quantum spin optimal-control and exact-controllability problems with control constraints is presented. Closed spin systems are of fundamental importance in modern quantum technologies such as nuclear magnetic resonance (NMR) spectroscopy, quantum imaging, and quantum computing. These systems are modeled by the Liouville--von Neumann master (LvNM) equation describing the time evolution of the density operator representing the state of the system. A unifying setting is provided to discuss optimal-control and exact-controllability results. Different controllability results for the LvNM model are given, and necessary optimality conditions for the LvNM control problems are analyzed. Existence and regularity of optimal controls are proved. The computational framework is based on matrix-free reduced-Hessian semismooth Krylov--Newton schemes for solving optimal-control problems of the LvNM equation in a real vector space rotating-frame representat...

[1]  Yvon Maday,et al.  Monotonic time-discretized schemes in quantum control , 2006, Numerische Mathematik.

[2]  Andrei A. Agrachev,et al.  An estimation of the controllability time for single-input systems on compact Lie Groups , 2006 .

[3]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[4]  Yvon Maday,et al.  Monotonic Parareal Control for Quantum Systems , 2007, SIAM J. Numer. Anal..

[5]  Herschel Rabitz,et al.  A RAPID MONOTONICALLY CONVERGENT ITERATION ALGORITHM FOR QUANTUM OPTIMAL CONTROL OVER THE EXPECTATION VALUE OF A POSITIVE DEFINITE OPERATOR , 1998 .

[6]  Domenico D'Alessandro,et al.  Controllability of One Spin and Two Interacting Spins , 2003, Math. Control. Signals Syst..

[7]  Navin Khaneja,et al.  On the Stochastic Control of Quantum Ensembles , 2000 .

[8]  A. Siegert,et al.  Magnetic Resonance for Nonrotating Fields , 1940 .

[9]  Stefan Volkwein,et al.  Formulation and numerical solution of finite-level quantum optimal control problems , 2008 .

[10]  Uwe Helmke,et al.  The dynamics of open quantum systems: accessibility results , 2007 .

[11]  Kazimierz Malanowski,et al.  CONVERGENCE OF THE LAGRANGE-NEWTON METHOD FOR OPTIMAL CONTROL PROBLEMS , 2004 .

[12]  U. Helmke,et al.  Optimization and Dynamical Systems , 1994, Proceedings of the IEEE.

[13]  G. Bodenhausen,et al.  Principles of nuclear magnetic resonance in one and two dimensions , 1987 .

[14]  E. Süli,et al.  An introduction to numerical analysis , 2003 .

[15]  Alfio Borzì,et al.  Computational Optimization of Systems Governed by Partial Differential Equations , 2012, Computational science and engineering.

[16]  Domenico D'Alessandro,et al.  The Lie algebra structure and controllability of spin systems , 2002 .

[17]  H. Sussmann,et al.  Control systems on Lie groups , 1972 .

[18]  Claudio Altafini,et al.  Controllability of quantum mechanical systems by root space decomposition of su(N) , 2002 .

[19]  Marlis Hochbruck,et al.  On Magnus Integrators for Time-Dependent Schrödinger Equations , 2003, SIAM J. Numer. Anal..

[20]  A. Borzì Quantum optimal control using the adjoint method , 2012 .

[21]  Axel Kröner,et al.  Semi-Smooth Newton Methods for Optimal Control of the Dynamical Lamé System with Control Constraints , 2013 .

[22]  Herschel Rabitz,et al.  Accelerated monotonic convergence of optimal control over quantum dynamics. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[24]  David J. Tannor,et al.  Loading a Bose-Einstein condensate onto an optical lattice: An application of optimal control theory to the nonlinear Schrödinger equation , 2002 .

[25]  Uwe Helmke,et al.  Lie Theory for Quantum Control , 2008 .

[26]  Karl Kunisch,et al.  Optimal control for elliptic systems with pointwise euclidean norm constraints on the controls , 2013, Math. Program..

[27]  Stefan Ulbrich,et al.  Optimization with PDE Constraints , 2008, Mathematical modelling.

[28]  A. Borzì,et al.  Computational techniques for a quantum control problem with H1-cost , 2008 .

[29]  Richard R. Ernst,et al.  Product operator formalism for the description of NMR pulse experiments , 1984 .

[30]  O. W. Sørensen,et al.  Polarization transfer experiments in high-resolution NMR spectroscopy , 1989 .

[31]  Michael Ulbrich,et al.  Semismooth Newton Methods for Operator Equations in Function Spaces , 2002, SIAM J. Optim..

[32]  A. L. Approach,et al.  Controllability Aspects of The Lindblad-Kossakowski Master Equation , 2009 .

[33]  J. Cavanagh Protein NMR Spectroscopy: Principles and Practice , 1995 .

[34]  Stefan Volkwein,et al.  A Globalized Newton Method for the Accurate Solution of a Dipole Quantum Control Problem , 2009, SIAM J. Sci. Comput..

[35]  A. I. Solomon,et al.  Controllability of Quantum Systems , 2003 .

[36]  David J. Tannor,et al.  Control of Photochemical Branching: Novel Procedures for Finding Optimal Pulses and Global Upper Bounds , 1992 .

[37]  David J. Tannor,et al.  Optimal control with accelerated convergence: Combining the Krotov and quasi-Newton methods , 2011 .

[38]  L. Vandersypen,et al.  NMR techniques for quantum control and computation , 2004, quant-ph/0404064.

[39]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[40]  Luigi Grippo,et al.  Metodi di ottimizzazione non vincolata , 2011 .

[41]  R. Brockett,et al.  Time optimal control in spin systems , 2000, quant-ph/0006114.

[42]  A. Gruslys,et al.  Comparing, optimizing, and benchmarking quantum-control algorithms in a unifying programming framework , 2010, 1011.4874.

[43]  Ivan I. Maximov,et al.  A smoothing monotonic convergent optimal control algorithm for nuclear magnetic resonance pulse sequence design. , 2010, The Journal of chemical physics.

[44]  Domenico D'Alessandro,et al.  Notions of controllability for bilinear multilevel quantum systems , 2003, IEEE Trans. Autom. Control..

[45]  S. Glaser,et al.  Second order gradient ascent pulse engineering. , 2011, Journal of magnetic resonance.

[46]  Lamberto Cesari,et al.  Optimization-Theory And Applications , 1983 .

[47]  Alfio Borzì,et al.  QUCON: A fast Krylov-Newton code for dipole quantum control problems , 2010, Computer Physics Communications.

[48]  Julien Salomon,et al.  A stable toolkit method in quantum control , 2008 .

[49]  H. Sussmann The “Bang-Bang” Problem for Certain Control Systems in $GL(n,R)$ , 1972 .

[50]  Burkhard Luy,et al.  Exploring the limits of broadband excitation and inversion pulses. , 2004, Journal of magnetic resonance.

[51]  B. Hall Lie Groups, Lie Algebras, and Representations: An Elementary Introduction , 2004 .

[52]  F. Tröltzsch Optimal Control of Partial Differential Equations: Theory, Methods and Applications , 2010 .

[53]  E B Lee,et al.  Foundations of optimal control theory , 1967 .

[54]  Hard,et al.  The complete homogeneous master equation for a heteronuclear two-spin system in the basis of cartesian product operators , 1998, Journal of magnetic resonance.

[55]  Timo O. Reiss,et al.  Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. , 2005, Journal of magnetic resonance.

[56]  Roger W. Brockett,et al.  Erratum: Sub-Riemannian geometry and time optimal control of three spin systems: Quantum gates and coherence transfer [Phys. Rev. A 65, 032301 (2002)] , 2003 .

[57]  Navin Khaneja,et al.  Sub-Riemannian geometry and time optimal control of three spin systems: Quantum gates and coherence transfer , 2002 .

[58]  Navin Khaneja,et al.  Cartan decomposition of SU(2n) and control of spin systems , 2001 .

[59]  V. Jurdjevic Geometric control theory , 1996 .

[60]  Karl Kunisch,et al.  Semismooth Newton Methods for Optimal Control of the Wave Equation with Control Constraints , 2011, SIAM J. Control. Optim..

[61]  Ilya Kuprov,et al.  Spinach--a software library for simulation of spin dynamics in large spin systems. , 2011, Journal of magnetic resonance.

[62]  Christiane P Koch,et al.  Monotonically convergent optimization in quantum control using Krotov's method. , 2010, The Journal of chemical physics.

[63]  Dionisis Stefanatos,et al.  Relaxation-optimized transfer of spin order in Ising spin chains (6 pages) , 2005 .

[64]  Uwe Helmke,et al.  Spin Dynamics: A Paradigm for Time Optimal Control on Compact Lie Groups , 2006, J. Glob. Optim..