Quasiprimitivity: Structure and Combinatorial Applications

A permutation group is said to be quasiprimitive if every nontrivial normal subgroup is transitive. Every primitive permutation group is quasiprimitive, but the converse is not true. Quasiprimitive group actions arise naturally in the investigation of many combinatorial structures, such as arc-transitive graphs, and line-transitive finite geometries. We describe some of the properties shared by finite primitive and quasiprimitive permutation groups, and some of their differences. We also indicate some of the recent major combinatorial applications of finite quasiprimitive groups.

[1]  Roland Häggkvist,et al.  All-even latin squares , 1996, Discret. Math..

[2]  A. Camina,et al.  Sporadic groups and automorphisms of linear spaces , 2000 .

[3]  Martin W. Liebeck,et al.  Minimal Degrees of Primitive Permutation Groups, with an Application to Monodromy Groups of Covers of Riemann Surfaces , 1991 .

[4]  Tomasz Luczak,et al.  On Random Generation of the Symmetric Group , 1993, Combinatorics, Probability and Computing.

[5]  J. Doyen,et al.  Most block-transitivet-designs are point-primitive , 1989 .

[6]  László Babai,et al.  On the order of doubly transitive permutation groups , 1982 .

[7]  Cheryl E. Praeger,et al.  On primitive overgroups of quasiprimitive permutation groups , 2003 .

[8]  Martin W. Liebeck On minimal degrees and base sizes of primitive permutation groups , 1984 .

[9]  Aner Shalev,et al.  Simple groups, permutation groups, and probability , 1999 .

[10]  P. Cameron FINITE PERMUTATION GROUPS AND FINITE SIMPLE GROUPS , 1981 .

[11]  Cheryl E. Praeger,et al.  On Finite Affine 2-Arc Transitive Graphs , 1993, Eur. J. Comb..

[12]  Camille Jordan Sur la limite du degré des groupes primitifs qui contiennent une substitution donnée. , 1875 .

[13]  C. Praeger On elements of prime order in primitive permutation groups , 1979 .

[14]  T. Luczak,et al.  Combinatorics, Geometry and Probability: On Random Generation of the Symmetric Group , 1997 .

[15]  L. Babai On the Order of Uniprimitive Permutation Groups , 1981 .

[16]  Cheryl E. Praeger,et al.  On the orders of Primitive Permutation Groups , 1980 .

[17]  LI Caiheng,et al.  FINITE s-ARC TRANSITIVE GRAPHS OF PRIME-POWER ORDER , 1993 .

[18]  Cheryl E. Praeger,et al.  A classification of the maximal subgroups of the finite alternating and symmetric groups , 1987 .

[19]  C. Praeger,et al.  Line-transitive, point quasiprimitive automorphism groups of finite linear spaces are affine or almost simple , 2001 .

[20]  Cheryl E. Praeger,et al.  On the O'Nan-Scott theorem for finite primitive permutation groups , 1988, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[21]  C. Praeger,et al.  Bounds on finite quasiprimitive permutation groups , 2001, Journal of the Australian Mathematical Society.

[22]  Cheryl E. Praeger,et al.  Inequalities involving the Delandtsheer-Doyen parameters for finite line-transitive linear spaces , 2003, J. Comb. Theory, Ser. A.

[23]  C. Praeger,et al.  On the Automorphism Groups of Cayley Graphs of Finite Simple Groups , 2002 .

[24]  Jennifer Wallis Two new block designs , 1969 .

[25]  Cheryl E. Praeger,et al.  Minimal degree of primitive permutation groups , 1976 .

[26]  C. Praeger An O'Nan‐Scott Theorem for Finite Quasiprimitive Permutation Groups and an Application to 2‐Arc Transitive Graphs , 1993 .

[27]  H. Weyl Permutation Groups , 2022 .

[28]  Alfred Bochert Ueber die Zahl der verschiedenen Werthe, die eine Function gegebener Buchstaben durch Vertauschung derselben erlangen kann , 1897 .

[29]  H. Wielandt,et al.  Finite Permutation Groups , 1964 .

[30]  P. M. Neumann,et al.  Alternating Groups Acting on Finite Linear Spaces , 2003 .

[31]  Cheryl E Praeger Surveys in Combinatorics, 1997: Finite Quasiprimitive Graphs , 1997 .

[32]  A. Camina The Socle of Automorphism Groups of Linear Spaces , 1996 .

[33]  Kay Magaard,et al.  On the Minimal Degree of a Primitive Permutation Group , 1998 .

[34]  R. Block On the orbits of collineation groups , 1967 .

[35]  Cheryl E. Praeger,et al.  The block-transitive, point-imprimitive 2-(729, 8, 1) designs , 1992, Applicable Algebra in Engineering, Communication and Computing.

[36]  Cheryl E. Praeger,et al.  The Inclusion Problem for Finite Primitive Permutation Groups , 1990 .

[37]  M. Liebeck,et al.  Primitive Permutation Groups Containing an Element of Large Prime Order , 1985 .

[38]  Alice C. Niemeyer,et al.  Finite line-transitive linear spaces: parameters and normal point-partitions , 2003 .

[39]  W. A. Manning On the order of primitive groups , 1909 .