Data depths satisfying the projection property

[1]  Y. Zuo Projection-based depth functions and associated medians , 2003 .

[2]  Jian Zhang Some Extensions of Tukey's Depth Function , 2002 .

[3]  Robert Serfling,et al.  Quantile functions for multivariate analysis: approaches and applications , 2002 .

[4]  Yijun Zuo,et al.  Nonparametric Notions of Multivariate “Scatter Measure” and “More Scattered” Based on Statistical Depth Functions , 2000 .

[5]  R. Serfling,et al.  General notions of statistical depth function , 2000 .

[6]  P. Rousseeuw,et al.  The depth function of a population distribution , 1999, Metrika.

[7]  Karl Mosler,et al.  Lift zonoids, random convex hulls and the variability of random vectors , 1998 .

[8]  Peter Rousseeuw,et al.  Computing location depth and regression depth in higher dimensions , 1998, Stat. Comput..

[9]  K. Mosler,et al.  Zonoid trimming for multivariate distributions , 1997 .

[10]  Regina Y. Liu,et al.  Notions of Limiting P Values Based on Data Depth and Bootstrap , 1997 .

[11]  Regina Y. Liu,et al.  A Quality Index Based on Data Depth and Multivariate Rank Tests , 1993 .

[12]  Regina Y. Liu On a Notion of Data Depth Based on Random Simplices , 1990 .

[13]  R. Y. Liu,et al.  On a notion of simplicial depth. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[14]  V. Barnett The Ordering of Multivariate Data , 1976 .

[15]  J. L. Hodges,et al.  A Bivariate Sign Test , 1955 .

[16]  H. Hotelling Stability in Competition , 1929 .

[17]  K. Mosler Multivariate Dispersion, Central Regions, and Depth , 2002 .

[18]  A. B. Yeh,et al.  Balanced Confidence Regions Based on Tukey’s Depth and the Bootstrap , 1997 .

[19]  R. Beran,et al.  Multivariate Symmetry Models , 1997 .

[20]  K. Mosler,et al.  Zonoid Data Depth: Theory and Computation , 1996 .

[21]  Regina Y. Liu Control Charts for Multivariate Processes , 1995 .

[22]  P. Mahalanobis On the generalized distance in statistics , 1936 .