Fault tolerance using algorithm-based data-word recovery

This paper examines how to design a lowcost and algorithm-based approach that recovers random multiple bit – errors in an application's data-words on memory during the execution time of an application. This is a low cost and an effective software technique in order to detect and recover an application’s sensitive data elements using an affordably lower redundancy in both time and space. This is a practical approach towards gaining fault tolerance and dependable computing through recovery or corrections of multiple bit-errors in memory variables as well.

[1]  Gregory K. Wallace,et al.  The JPEG still picture compression standard , 1991, CACM.

[2]  I. Daubechies,et al.  Wavelet Transforms That Map Integers to Integers , 1998 .

[3]  Goutam Kumar Saha Beyond the conventional techniques of software fault tolerance , 2004, UBIQ.

[4]  Man Young Rhee,et al.  Error-correcting coding theory , 1989 .

[5]  Min-Jen Tsai,et al.  Stack-run image coding , 1996, IEEE Trans. Circuits Syst. Video Technol..

[6]  I. Daubechies,et al.  Biorthogonal bases of compactly supported wavelets , 1992 .

[7]  Allen Gersho,et al.  Vector quantization and signal compression , 1991, The Kluwer international series in engineering and computer science.

[8]  David S. Taubman,et al.  High performance scalable image compression with EBCOT , 1999, Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348).

[9]  Adrian S. Lewis,et al.  Image compression using the 2-D wavelet transform , 1992, IEEE Trans. Image Process..

[10]  Jerome M. Shapiro,et al.  Embedded image coding using zerotrees of wavelet coefficients , 1993, IEEE Trans. Signal Process..

[11]  William A. Pearlman,et al.  A new, fast, and efficient image codec based on set partitioning in hierarchical trees , 1996, IEEE Trans. Circuits Syst. Video Technol..

[12]  Martin Vetterli,et al.  Wavelets and filter banks: theory and design , 1992, IEEE Trans. Signal Process..

[13]  J. H. Green,et al.  An Error-Correcting Encoder and Decoder of High Efficiency , 1958, Proceedings of the IRE.

[14]  V. Rao Vemuri,et al.  Adaptive wavelet coding of multimedia images , 1999, MULTIMEDIA '99.

[15]  Michael J. Gormish,et al.  Next Generation Image Compression And Manipulation Using CREW , 1997, Proceedings of International Conference on Image Processing.

[16]  Ali Tabatabai,et al.  Sub-band coding of digital images using symmetric short kernel filters and arithmetic coding techniques , 1988, ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing.

[17]  P. Vaidyanathan Multirate Systems And Filter Banks , 1992 .

[18]  Jacob A. Abraham,et al.  Algorithm-Based Fault Tolerance for Matrix Operations , 1984, IEEE Transactions on Computers.

[19]  S. Mallat,et al.  Second generation compact image coding with wavelets , 1993 .

[20]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[21]  S. Wicker Error Control Systems for Digital Communication and Storage , 1994 .

[22]  Joan L. Mitchell,et al.  JPEG: Still Image Data Compression Standard , 1992 .

[23]  Frank E. McGarry,et al.  Towards understanding software: 15 years in the SEL , 1990 .

[24]  Goutam K. Saha Transient fault tolerant processing in a RF application , 2000 .

[25]  Truong Q. Nguyen,et al.  Wavelets and filter banks , 1996 .

[26]  Goutam Kumar Saha,et al.  A software fix towards fault-tolerant computing , 2005, UBIQ.

[27]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Hermann Kopetz,et al.  Fault tolerance, principles and practice , 1990 .