Thermodynamics and Stability of Non-Equilibrium Steady States in Open Systems

Thermodynamical arguments are known to be useful in the construction of physically motivated Lyapunov functionals for nonlinear stability analysis of spatially homogeneous equilibrium states in thermodynamically isolated systems. Unfortunately, the limitation to isolated systems is essential, and standard arguments are not applicable even for some very simple thermodynamically open systems. On the other hand, the nonlinear stability of thermodynamically open systems is usually investigated using the so-called energy method. The mathematical quantity that is referred to as the “energy” is, however, in most cases not linked to the energy in the physical sense of the word. Consequently, it would seem that genuine thermo-dynamical concepts are of no use in the nonlinear stability analysis of thermodynamically open systems. We show that this is not the case. In particular, we propose a construction that in the case of a simple heat conduction problem leads to a physically well-motivated Lyapunov type functional, which effectively replaces the artificial Lyapunov functional used in the standard energy method. The proposed construction seems to be general enough to be applied in complex thermomechanical settings.

[1]  Albert Y. Zomaya,et al.  Partial Differential Equations , 2007, Explorations in Numerical Analysis.

[2]  Josef Málek,et al.  Thermodynamics and stability of non-equilibrium steady states in open systems -- incompressible heat conducting viscous fluid subject to a temperature gradient , 2019, 1905.09394.

[3]  K. Rajagopal,et al.  Derivation of the Variants of the Burgers Model Using a Thermodynamic Approach and Appealing to the Concept of Evolving Natural Configurations , 2018, Fluids.

[4]  Karel Tuma,et al.  Finite Amplitude Stability of Internal Steady Flows of the Giesekus Viscoelastic Rate-Type Fluid , 2018, Entropy.

[5]  E. Suli,et al.  Thermodynamics of viscoelastic rate-type fluids with stress diffusion , 2017, 1706.06277.

[6]  J. Stein,et al.  Viscoelastic rate type fluids with temperature dependent material parameters – stability of the rest state , 2017, 1701.08966.

[7]  Jaroslav Hron,et al.  On thermodynamics of incompressible viscoelastic rate type fluids with temperature dependent material coefficients , 2016, 1612.01724.

[8]  Jaroslav Hron,et al.  On thermodynamics of viscoelastic rate type fluids with temperature dependent material coefficients , 2016 .

[9]  K. Rajagopal,et al.  On a variant of the Maxwell and Oldroyd-B models within the context of a thermodynamic basis , 2015 .

[10]  Adriano Sciacovelli,et al.  Entropy generation analysis as a design tool - A review , 2015 .

[11]  D. Duffy Second‐Order Parabolic Differential Equations , 2013 .

[12]  E. Feireisl,et al.  Relative Entropies, Suitable Weak Solutions, and Weak-Strong Uniqueness for the Compressible Navier–Stokes System , 2012, Journal of Mathematical Fluid Mechanics.

[13]  E. Feireisl,et al.  Weak–Strong Uniqueness Property for the Full Navier–Stokes–Fourier System , 2011, 1111.4256.

[14]  E. Feireisl,et al.  Relative Entropies, Suitable Weak Solutions, and Weak-Strong Uniqueness for the Compressible Navier–Stokes System , 2011, 1111.3082.

[15]  E. Feireisl,et al.  Singular Limits in Thermodynamics of Viscous Fluids , 2009 .

[16]  K. R. Rajagopal,et al.  On thermomechanical restrictions of continua , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[17]  Miroslav Šilhavý,et al.  The Mechanics and Thermodynamics of Continuous Media , 2002 .

[18]  Marco Dressler,et al.  Macroscopic thermodynamics of flowing polymeric liquids , 1999 .

[19]  J. N. Flavin,et al.  Regular ArticleAsymptotic and Other Properties of a Nonlinear Diffusion Model , 1998 .

[20]  Miroslav Grmela,et al.  Dynamics and thermodynamics of complex fluids. I. Development of a general formalism , 1997 .

[21]  Miroslav Grmela,et al.  Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism , 1997 .

[22]  J. N. Flavin,et al.  Qualitative Estimates For Partial Differential Equations: An Introduction , 1996 .

[23]  O. Reynolds On the dynamical theory of incompressible viscous fluids and the determination of the criterion , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[24]  O. A. Ladyzhenskai︠a︡,et al.  Linear and Quasi-linear Equations of Parabolic Type , 1995 .

[25]  J. A. Walker,et al.  The general problem of the stability of motion , 1994 .

[26]  C. Truesdell,et al.  The Non-Linear Field Theories Of Mechanics , 1992 .

[27]  Daniel B. Henry Geometric Theory of Semilinear Parabolic Equations , 1989 .

[28]  H. Callen Thermodynamics and an Introduction to Thermostatistics , 1988 .

[29]  J. M. Ball,et al.  GEOMETRIC THEORY OF SEMILINEAR PARABOLIC EQUATIONS (Lecture Notes in Mathematics, 840) , 1982 .

[30]  C. Dafermos The second law of thermodynamics and stability , 1979 .

[31]  D. Joseph,et al.  Stability of fluid motions. I, II , 1976 .

[32]  Morton E. Gurtin,et al.  Thermodynamics and stability , 1975 .

[33]  M. Gurtin Thermodynamics and the energy criterion for stability , 1973 .

[34]  J. Ericksen A thermo-kinetic view of elastic stability theory , 1966 .

[35]  Solomon Lefschetz,et al.  Stability by Liapunov's Direct Method With Applications , 1962 .

[36]  J. Gibbs On the equilibrium of heterogeneous substances , 1878, American Journal of Science and Arts.

[37]  J. Málek,et al.  Derivation of Equations for Continuum Mechanics and Thermodynamics of Fluids , 2016 .

[38]  Marko Wagner,et al.  Introduction To The Thermodynamics Of Solids , 2016 .

[39]  Jessika Weiss Stability And Transition In Shear Flows , 2016 .

[40]  The Stability or Instability of the Steady Motions of a Perfect Liquid and of a Viscous Liquid. Part I: A Perfect Liquid , 2008 .

[41]  K. Rajagopal,et al.  A thermodynamic frame work for rate type fluid models , 2000 .

[42]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[43]  Brian Straughan,et al.  The Energy Method, Stability, and Nonlinear Convection , 1991 .

[44]  V. I. I︠U︡dovich The linearization method in hydrodynamical stability theory , 1989 .

[45]  A. Friedman Partial Differential Equations of Parabolic Type , 1983 .

[46]  D. J. Tritton,et al.  The Theory of Hydrodynamic Stability , 1977 .

[47]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[48]  Daniel D. Joseph,et al.  Stability of fluid motions , 1976 .

[49]  P. Glansdorff,et al.  Thermodynamic theory of structure, stability and fluctuations , 1971 .

[50]  B. D. Coleman On the stability of equilibrium states of general fluids , 1970 .

[51]  吉沢 太郎 Stability theory by Liapunov's second method , 1966 .

[52]  S. Chandrasekhar Hydrodynamic and Hydromagnetic Stability , 1961 .

[53]  Edward A. Bruges,et al.  Available energy and the second law analysis , 1959 .

[54]  James Serrin,et al.  On the stability of viscous fluid motions , 1959 .

[55]  Pierre Maurice Marie Duhem,et al.  Traité D'Énergétique ou de Thermodynamique Générale , 1913 .

[56]  O. Reynolds II. On the dynamical theory of incompressible viscous fluids and the determination of the criterion , 1894, Proceedings of the Royal Society of London.

[57]  R. Clausius,et al.  Ueber verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der mechanischen Wärmetheorie , 1865 .