An extensive experimental comparison of methods for multi-label learning
暂无分享,去创建一个
Saso Dzeroski | Dejan Gjorgjevikj | Gjorgji Madjarov | Dragi Kocev | S. Džeroski | D. Kocev | Gjorgji Madjarov | D. Gjorgjevikj
[1] Dragi Kocev,et al. Ensembles for Predicting Structured Outputs , 2012, Informatica.
[2] Geoff Holmes,et al. Classifier chains for multi-label classification , 2009, Machine Learning.
[3] Chih-Jen Lin,et al. LIBSVM: A library for support vector machines , 2011, TIST.
[4] Wei-Yin Loh,et al. Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..
[5] Grigorios Tsoumakas,et al. Mining Multi-label Data , 2010, Data Mining and Knowledge Discovery Handbook.
[6] Johannes Fürnkranz,et al. Efficient voting prediction for pairwise multilabel classification , 2010, ESANN.
[7] Ian H. Witten,et al. The WEKA data mining software: an update , 2009, SKDD.
[8] HüllermeierEyke,et al. Combining instance-based learning and logistic regression for multilabel classification , 2009 .
[9] Eyke Hüllermeier,et al. Combining instance-based learning and logistic regression for multilabel classification , 2009, Machine Learning.
[10] Geoff Holmes,et al. Multi-label Classification Using Ensembles of Pruned Sets , 2008, 2008 Eighth IEEE International Conference on Data Mining.
[11] Saso Dzeroski,et al. Decision trees for hierarchical multi-label classification , 2008, Machine Learning.
[12] Grigorios Tsoumakas,et al. An Empirical Study of Lazy Multilabel Classification Algorithms , 2008, SETN.
[13] Seungok Lee,et al. Organization of Maximum Surgical Blood Order Schedule (MSBOS) according to the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) , 2008 .
[14] Grigorios Tsoumakas,et al. Multilabel Text Classification for Automated Tag Suggestion , 2008 .
[15] Grigorios Tsoumakas,et al. Effective and Efficient Multilabel Classification in Domains with Large Number of Labels , 2008 .
[16] Krzysztof Trojanowski,et al. Intelligent Information Processing and Web Mining , 2008 .
[17] Grigorios Tsoumakas,et al. Multi-Label Classification of Music into Emotions , 2008, ISMIR.
[18] Jesse Read,et al. A Pruned Problem Transformation Method for Multi-label Classification , 2008 .
[19] Grigorios Tsoumakas,et al. Random k -Labelsets: An Ensemble Method for Multilabel Classification , 2007, ECML.
[20] Johannes Fürnkranz,et al. Efficient Pairwise Classification , 2007, ECML.
[21] Saso Dzeroski,et al. Ensembles of Multi-Objective Decision Trees , 2007, ECML.
[22] Grigorios Tsoumakas,et al. Multi-Label Classification: An Overview , 2007, Int. J. Data Warehous. Min..
[23] Zhi-Hua Zhou,et al. ML-KNN: A lazy learning approach to multi-label learning , 2007, Pattern Recognit..
[24] Janez Demsar,et al. Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..
[25] Marcel Worring,et al. The challenge problem for automated detection of 101 semantic concepts in multimedia , 2006, MM '06.
[26] Zhi-Hua Zhou,et al. Multilabel Neural Networks with Applications to Functional Genomics and Text Categorization , 2006, IEEE Transactions on Knowledge and Data Engineering.
[27] Eyke Hüllermeier,et al. A Unified Model for Multilabel Classification and Ranking , 2006, ECAI.
[28] Piotr Synak,et al. Multi-Label Classification of Emotions in Music , 2006, Intelligent Information Systems.
[29] A.N. Srivastava,et al. Discovering recurring anomalies in text reports regarding complex space systems , 2005, 2005 IEEE Aerospace Conference.
[30] Lior Rokach,et al. Data Mining And Knowledge Discovery Handbook , 2005 .
[31] Peter I. Cowling,et al. MMAC: a new multi-class, multi-label associative classification approach , 2004, Fourth IEEE International Conference on Data Mining (ICDM'04).
[32] Yiming Yang,et al. The Enron Corpus: A New Dataset for Email Classi(cid:12)cation Research , 2004 .
[33] Jiebo Luo,et al. Learning multi-label scene classification , 2004, Pattern Recognit..
[34] Sunita Sarawagi,et al. Discriminative Methods for Multi-labeled Classification , 2004, PAKDD.
[35] Leo Breiman,et al. Random Forests , 2001, Machine Learning.
[36] Yoram Singer,et al. BoosTexter: A Boosting-based System for Text Categorization , 2000, Machine Learning.
[37] Eric Bauer,et al. An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants , 1999, Machine Learning.
[38] Chih-Jen Lin,et al. Probability Estimates for Multi-class Classification by Pairwise Coupling , 2003, J. Mach. Learn. Res..
[39] Rémi Gilleron,et al. Learning Multi-label Alternating Decision Trees from Texts and Data , 2003, MLDM.
[40] Koby Crammer,et al. A Family of Additive Online Algorithms for Category Ranking , 2003, J. Mach. Learn. Res..
[41] David A. Forsyth,et al. Object Recognition as Machine Translation: Learning a Lexicon for a Fixed Image Vocabulary , 2002, ECCV.
[42] Johannes Fürnkranz,et al. Round Robin Classification , 2002, J. Mach. Learn. Res..
[43] Amanda Clare,et al. Knowledge Discovery in Multi-label Phenotype Data , 2001, PKDD.
[44] Jason Weston,et al. A kernel method for multi-labelled classification , 2001, NIPS.
[45] Luc De Raedt,et al. Top-Down Induction of Clustering Trees , 1998, ICML.
[46] R. Iman,et al. Approximations of the critical region of the fbietkan statistic , 1980 .
[47] B. Ripley,et al. Pattern Recognition , 1968, Nature.
[48] E. S. Pearson. Biometrika tables for statisticians , 1967 .
[49] M. Friedman. A Comparison of Alternative Tests of Significance for the Problem of $m$ Rankings , 1940 .