Performance of wavefront sensors in strong scintillation

The estimation accuracy of wavefront sensors in strong scintillation is examined. Wave optical simulation is used to characterize the performance of several wavefront sensors in the absence of measurement noise. The estimation accuracy of a Schack-Hartmann sensor is shown to be poor in strong scintillation due primarily to the presence of branch points in the phase function. The estimation accuracy of a unit-shear, shearing interferometer is found to be significantly better than that of a Hartmann sensor in strong scintillation. The estimation accuracy of a phase shifting point diffraction interferometer is shown to be invariant with scintillation.