The complexity of constraint satisfaction problems for small relation algebras

Andreka and Maddux [Notre Dame J. Formal Logic 35 (4) 1994] classified the small relation algebras--those with at most 8 elements, or in other terms, at most 3 atomic relations. They showed that there are eighteen isomorphism types of small relation algebras, all representable. For each simple, small relation algebra they computed the spectrum of the algebra, namely the set of cardinalities of square representations of that relation algebra.In this paper we analyze the computational complexity of the problem of deciding the satisfiability of a finite set of constraints built on any small relation algebra. We give a complete classification of the complexities of the general constraint satisfaction problem for small relation algebras. For three of the small relation algebras the constraint satisfaction problem is NP-complete, for the other fifteen small relation algebras the constraint satisfaction problem has cubic (or lower) complexity.We also classify the complexity of the constraint satisfaction problem over fixed finite representations of any relation algebra. If the representation has size two or less then the complexity is cubic (or lower), but if the representation is square, finite and bigger than two then the complexity is NP-complete.

[1]  Algebraic logic , 1985, Problem books in mathematics.

[2]  Henry A. Kautz,et al.  Constraint propagation algorithms for temporal reasoning: a revised report , 1989 .

[3]  Raúl E. Valdés-Pérez,et al.  The Satisfiability of Temporal Constraint Networks , 1987, AAAI.

[4]  Andrew U. Frank,et al.  Qualitative spatial reasoning about distances and directions in geographic space , 1992, J. Vis. Lang. Comput..

[5]  Wilfrid Hodges,et al.  Model Theory: The existential case , 1993 .

[6]  Bernhard Nebel,et al.  Reasoning about temporal relations: a maximal tractable subclass of Allen's interval algebra , 1994, JACM.

[7]  Raymond E. Miller,et al.  Complexity of Computer Computations , 1972 .

[8]  Robin Hirsch,et al.  Expressive Power and Complexity in Algebraic Logic , 1997, J. Log. Comput..

[9]  Eugene C. Freuder,et al.  The Complexity of Some Polynomial Network Consistency Algorithms for Constraint Satisfaction Problems , 1985, Artif. Intell..

[10]  Robin Hirsch,et al.  Tractable approximations for temporal constraint handling , 2000, Artif. Intell..

[11]  Christer Bäckström,et al.  Computational Complexity of Relating Time Points with Intervals , 1999, Artif. Intell..

[12]  Brandon Bennett Determining Consistency of Topological Relations , 2004, Constraints.

[13]  Roger D. Maddux,et al.  Representations for Small Relation Algebras , 1994, Notre Dame J. Formal Log..

[14]  Henry A. Kautz,et al.  Constraint Propagation Algorithms for Temporal Reasoning , 1986, AAAI.

[15]  Peter B. Ladkin,et al.  On binary constraint problems , 1994, JACM.

[16]  Roger D. Maddux,et al.  The origin of relation algebras in the development and axiomatization of the calculus of relations , 1991, Stud Logica.

[17]  Peter Jonsson,et al.  Maximal Tractable Subclasses of Allen's Interval Algebra: Preliminary Report , 1996, AAAI/IAAI, Vol. 1.

[18]  P. Cameron,et al.  Oligomorphic permutation groups , 1990 .

[19]  Ulrich Geske,et al.  Contributions to Artificial Intelligence , 1991 .

[20]  James F. Allen,et al.  Planning Using a Temporal World Model , 1983, IJCAI.

[21]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[22]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[23]  Barry Richards,et al.  parcPlan: A Planning Architecture with Parallel Actions, Resources and Constraints , 1994, ISMIS.

[24]  Ivo Düntsch,et al.  Algebras of Approximating Regions , 2001, Fundam. Informaticae.

[25]  Gunther Schmidt,et al.  A Necessary Relation Algebra for Mereotopology , 2001, Stud Logica.

[26]  Rina Dechter,et al.  Temporal Constraint Networks , 1989, Artif. Intell..

[27]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[28]  Drew McDermott,et al.  Temporal Data Base Management , 1987, Artif. Intell..

[29]  Robin Hirsch,et al.  A Finite Relation Algebra with Undecidable Network Satisfaction Problem , 1999, Log. J. IGPL.

[30]  Peter Jonsson,et al.  A Complete Classification of Tractability in RCC-5 , 1997, J. Artif. Intell. Res..

[31]  I. Hodkinson,et al.  Relation Algebras by Games , 2002 .

[32]  Alexander Reinefeld,et al.  A Symbolic Approach to Interval Constraint Problems , 1992, AISMC.

[33]  Ivo Düntsch Small integral relation algebras generated by a partial order , 1991 .

[34]  Edward P. K. Tsang,et al.  Foundations of constraint satisfaction , 1993, Computation in cognitive science.

[35]  Johan de Kleer,et al.  Readings in qualitative reasoning about physical systems , 1990 .

[36]  Matteo Cristani,et al.  Many-Sorted Preference Relations , 2002, International Conference on Principles of Knowledge Representation and Reasoning.

[37]  James F. Allen Towards a General Theory of Action and Time , 1984, Artif. Intell..

[38]  Bernhard Nebel,et al.  On the Complexity of Qualitative Spatial Reasoning: A Maximal Tractable Fragment of the Region Connection Calculus , 1999, Artif. Intell..

[39]  Frank D. Anger,et al.  Satisfiability in Nonlinear Time: Algorithms and Complexity , 1999, FLAIRS.

[40]  A. Tarski,et al.  Boolean Algebras with Operators , 1952 .

[41]  James F. Allen An Interval-Based Representation of Temporal Knowledge , 1981, IJCAI.

[42]  Ivo Düntsch,et al.  A relation - algebraic approach to the region connection calculus , 2001, Theor. Comput. Sci..

[43]  Jochen Renz,et al.  Maximal Tractable Fragments of the Region Connection Calculus: A Complete Analysis , 1999, IJCAI.

[44]  Peter Jonsson,et al.  Twenty-One Large Tractable Subclasses of Allen's Algebra , 1997, Artif. Intell..

[45]  Alfred Tarski,et al.  Relational selves as self-affirmational resources , 2008 .

[46]  Henry Kautz,et al.  A model of naive temporal reasoning , 1985 .

[47]  Matteo Cristani,et al.  The Complexity of Reasoning about Spatial Congruence , 1999, J. Artif. Intell. Res..

[48]  Thomas Drakengren A Complete Classiication of Tractability in the Spatial Theory Rcc-5 , 1997 .

[49]  Max J. Egenhofer,et al.  Reasoning about Binary Topological Relations , 1991, SSD.

[50]  Tomas Hrycej,et al.  A Temporal Extension of Prolog , 1993, J. Log. Program..