This paper discusses the application of laser scanning and photo-realistic modelling to aid the study of geological outcrops, using two examples from central and eastern Utah, USA, which are analogues to subsurface hydrocarbon fields. Terrestrial laser scanning point clouds were triangulated to obtain high-resolution surface representations, which were combined with semi-metric imagery to give texture-mapped photo-realistic models of the outcrops. Such models provide the basis for geological interpretation and were used to reconstruct the geometries of layers over the extent of the study area. The digitised geological layers were in turn used to build geocellular volumes that capture the properties of the geology. These models were built in subsurface reservoir modelling software and were used to simulate the flow of fluids through the reservoir analogue. In this way, the spatial information provided significantly more detailed quantitative data and greatly improved the outcrop studies compared to traditional field techniques.
Resume
Cet article traite de l’application du laser a balayage et de la modelisation visuellement realiste pour l’etude d’affleurements geologiques, a partir de deux exemples du centre et de l’est de l’Utah, Etats-Unis, qui presentent des analogies avec des nappes d’hydrocarbures. Des nuages de points obtenus par laser terrestre a balayage ont ete triangules pour obtenir des representations surfaciques a haute resolution, et combines avec des images semi-metriques pour fournir des modeles realistes textures des affleurements. Ces modeles, qui servent de base a l’interpretation geologique, ont ete utilises pour reconstruire la geometrie des couches sur toute l’etendue de la zone d’etude. Les couches geologiques numerisees ont ensuite permis de construire des volumes elementaires pour decrire les proprietes geologiques. Ces modeles ont ete construits par un logiciel de modelisation de reservoir souterrain et utilises pour simuler l’ecoulement des fluides a travers le reservoir. De cette maniere, l’information spatiale a fourni des donnees quantitatives beaucoup plus detaillees et une amelioration notable de l’etude des affleurements par rapport aux techniques classiques de terrain.
Zusammenfassung
Dieser Beitrag behandelt die Anwendung von Laserscanning und photorealistischer Modellierung zur Unterstutzung des Studiums geologischer Aufschlusse anhand zweier Beispiele aus Mittel- und Ost Utah, USA, als Analogon zu unterirdischen Kohlenwasserstofflagerstatten. Die Punktwolken aus terrestrischem Laserscanning wurden trianguliert, um hochauflosende Oberflachenreprasentationen zu erhalten. Diese wurden mit Teilmessbildern verknupft, um Texturen fur photorealistische Modelle der Ausgrabungen zu erstellen. Diese Modelle dienen als Basis zur geologischen Interpretation und wurden zur Rekonstruktion der Geometrien der Schichten des gesamten Untersuchungsgebiets genutzt. Die digitalisierten geologischen Schichten wurden weiterhin genutzt, um geozellulare Volumen zu erstellen, die die Eigenschaften der Geologie erfassen. Diese Modelle wurden in Software zur Modellierung unterirdischer Reservoirs eingebaut und zur Simulation des Durchflusses durch die Reservoir-Nachbildung genutzt. Auf diese Art und Weise lieferte die raumliche Information deutlich detailliertere quantitative Daten und verbesserten spurbar die Studien der Aufschlusse im Vergleich zu traditionellen Messtechniken im Feld.
Resumen
Este articulo reflexiona sobre la aplicacion del escaner laser y del modelado fotorrealistico para estudiar afloramientos geologicos, utilizando dos ejemplos de la parte central y oriental de Utah, Estados Unidos, analogos a los campos de hidrocarburos subsuperficiales. Las nubes de puntos de laser escaner terrestre se triangularon para obtener representaciones superficiales de alta resolucion, que se combinaron con imagenes semimetricas para obtener modelos fotorrealisticos texturizados de los afloramientos. Tales modelos son la base de la interpretacion geologica y se utilizaron para reconstruir la geometria de los estratos superpuestos en todo el area de estudio. Por otro lado los estratos geologicos digitalizados se utilizaron para construir volumenes geocelulares que representan las propiedades geologicas. Estos modelos se elaboraron con programas de modelado de reservorios subsuperficiales y se utilizaron para simular la circulacion de fluidos a traves del reservorio virtual. De este modo la informacion espacial proporciono datos cuantitativos mucho mas detallados, lo que mejoro notablemente el estudio de los afloramientos en comparacion con las tecnicas de campo tradicionales.
[1]
D. Petley,et al.
Combined Digital Photogrammetry and Time‐of‐Flight Laser Scanning for Monitoring Cliff Evolution
,
2005
.
[2]
H. L. Mitchell,et al.
Integration, validation and point spacing optimisation of digital elevation models
,
2004
.
[3]
Philippe J. J. Desmet,et al.
Effects of Interpolation Errors on the Analysis of DEMs
,
1997
.
[4]
J. Howell,et al.
Impact of deltaic clinothems on reservoir performance: Dynamic studies of reservoir analogs from the Ferron Sandstone Member and Panther Tongue, Utah
,
2010
.
[5]
S. Buckley,et al.
Terrestrial laser scanning in geology: data acquisition, processing and accuracy considerations
,
2008,
Journal of the Geological Society.
[6]
J. Stafleu,et al.
Outcrop topography as a proxy of acoustic impedance in synthetic seismograms
,
1996
.
[7]
I. Trinks,et al.
Unlocking the spatial dimension: digital technologies and the future of geoscience fieldwork
,
2005,
Journal of the Geological Society.
[8]
S. Flint,et al.
The Geological modelling of hydrocarbon reservoirs and outcrop analogues
,
1992
.
[9]
Jamie K. Pringle,et al.
Virtual outcrop models of petroleum reservoir analogues: a review of the current state-of-the-art
,
2006
.
[10]
X. Janson,et al.
Improving fractured carbonate-reservoir characterization with remote sensing of beds, fractures, and vugs
,
2009
.
[11]
John A. Howell,et al.
Overlapping faults and their effect on fluid flow in different reservoir types: A LIDAR-based outcrop modeling and flow simulation study
,
2009
.
[12]
Paul J. Besl,et al.
A Method for Registration of 3-D Shapes
,
1992,
IEEE Trans. Pattern Anal. Mach. Intell..
[13]
John A. Howell,et al.
From outcrop to reservoir simulation model: Workflow and procedures
,
2007
.
[14]
David Hodgetts,et al.
Structural geology and 4D evolution of a half-graben: New digital outcrop modelling techniques applied to the Nukhul half-graben, Suez rift, Egypt
,
2009
.
[15]
R. Rosenbauer,et al.
A photogrammetric surveying method for field applications
,
2009
.
[16]
Peter Axelsson,et al.
Processing of laser scanner data-algorithms and applications
,
1999
.
[17]
Sabry F. El-Hakim,et al.
A multi-sensor approach to creating accurate virtual environments 1 Revised version of a paper prese
,
1998
.
[18]
K. Verwer,et al.
Evolution of a High-Relief Carbonate Platform Slope Using 3D Digital Outcrop Models: Lower Jurassic Djebel Bou Dahar, High Atlas, Morocco
,
2009
.
[19]
Allard W. Martinius,et al.
Uncertainty analysis of fluvial outcrop data for stochastic reservoir modelling
,
2005,
Petroleum Geoscience.
[20]
Jamie K. Pringle,et al.
3D high-resolution digital models of outcrop analogue study sites to constrain reservoir model uncertainty: an example from Alport Castles, Derbyshire, UK
,
2004,
Petroleum Geoscience.
[21]
Claus Brenner,et al.
Coarse orientation of terrestrial laser scans in urban environments
,
2008
.
[22]
D. Stead,et al.
Quantifying discontinuity orientation and persistence on high mountain rock slopes and large landslides using terrestrial remote sensing techniques
,
2009
.
[23]
C. Kerans,et al.
Digital Outcrop Models: Applications of Terrestrial Scanning Lidar Technology in Stratigraphic Modeling
,
2005
.