Co-Evolutionary Dynamics of the Bacteria Vibrio sp. CV1 and Phages V1G, V1P1, and V1P2: Implications for Phage Therapy

[1]  P. Venail,et al.  Co-Evolutionary Dynamics of the Bacteria Vibrio sp. CV1 and Phages V1G, V1P1, and V1P2: Implications for Phage Therapy , 2013, Microbial Ecology.

[2]  A. Buckling,et al.  Effects of Sequential and Simultaneous Applications of Bacteriophages on Populations of Pseudomonas aeruginosa In Vitro and in Wax Moth Larvae , 2012, Applied and Environmental Microbiology.

[3]  Â. Cunha,et al.  Bacteriophage therapy as a bacterial control strategy in aquaculture , 2012, Aquaculture International.

[4]  A. Hassen,et al.  Evaluation of a cocktail of three bacteriophages for the biocontrol of Salmonella of wastewater , 2012 .

[5]  W. Han,et al.  A Method for Generation Phage Cocktail with Great Therapeutic Potential , 2012, PloS one.

[6]  S. Abedon,et al.  Phage therapy pharmacology phage cocktails. , 2012, Advances in applied microbiology.

[7]  A. Buckling,et al.  The costs of evolving resistance in heterogeneous parasite environments , 2012, Proceedings of the Royal Society B: Biological Sciences.

[8]  B. Levin,et al.  The Population and Evolutionary Dynamics of Vibrio cholerae and Its Bacteriophage: Conditions for Maintaining Phage-Limited Communities , 2011, The American Naturalist.

[9]  T. Yomo,et al.  Ongoing Phenotypic and Genomic Changes in Experimental Coevolution of RNA Bacteriophage Qβ and Escherichia coli , 2011, PLoS genetics.

[10]  P. Sorgeloos,et al.  Alternatives to antibiotics for the control of bacterial disease in aquaculture. , 2011, Current opinion in microbiology.

[11]  A. Buckling,et al.  Bacteria-Phage Antagonistic Coevolution in Soil , 2011, Science.

[12]  S. Gottesman Microbiology: Dicing defence in bacteria , 2011, Nature.

[13]  J. Azeredo,et al.  In vivo efficiency evaluation of a phage cocktail in controlling severe colibacillosis in confined conditions and experimental poultry houses. , 2010, Veterinary microbiology.

[14]  M. Kutateladze,et al.  Bacteriophages as potential new therapeutics to replace or supplement antibiotics. , 2010, Trends in biotechnology.

[15]  A. Buckling,et al.  IMPACT OF BACTERIAL MUTATION RATE ON COEVOLUTIONARY DYNAMICS BETWEEN BACTERIA AND PHAGES , 2010, Evolution; international journal of organic evolution.

[16]  D. Little,et al.  Aquaculture: global status and trends , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[17]  J. Azeredo,et al.  The in vivo efficacy of two administration routes of a phage cocktail to reduce numbers of Campylobacter coli and Campylobacter jejuni in chickens , 2010, BMC Microbiology.

[18]  Sylvain Moineau,et al.  Bacteriophage resistance mechanisms , 2010, Nature Reviews Microbiology.

[19]  Neil Hall,et al.  Antagonistic coevolution accelerates molecular evolution , 2010, Nature.

[20]  R. Barrangou,et al.  CRISPR/Cas, the Immune System of Bacteria and Archaea , 2010, Science.

[21]  C. Jessup,et al.  Ecology and evolution in microbial systems: the generation and maintenance of diversity in phage-host interactions. , 2008, Research in microbiology.

[22]  K. Vijayan,et al.  Distribution of luminescent Vibrio harveyi and their bacteriophages in a commercial shrimp hatchery in South India , 2008 .

[23]  Sylvain Gandon,et al.  The Evolution of Specificity in Evolving and Coevolving Antagonistic Interactions Between a Bacteria and its Phage , 2007, Evolution; international journal of organic evolution.

[24]  W. Verstraete,et al.  Alternatives to antibiotics to control bacterial infections: luminescent vibriosis in aquaculture as an example. , 2007, Trends in biotechnology.

[25]  I. Karunasagar,et al.  Biocontrol of pathogens in shrimp hatcheries using bacteriophages , 2007 .

[26]  G. Hanlon,et al.  Bacteriophages: an appraisal of their role in the treatment of bacterial infections. , 2007, International journal of antimicrobial agents.

[27]  J. Balcázar,et al.  Probiotics as control agents in aquaculture , 2007 .

[28]  T. Nakai,et al.  Phage Therapy against β-hemolytic Streptococcicosis of Japanese Flounder Paralichthys olivaceus , 2007 .

[29]  J. Blais,et al.  Using bacteriophages to prevent furunculosis caused by Aeromonas salmonicida in farmed brook trout , 2006 .

[30]  I. Karunasagar,et al.  Isolation of Vibrio harveyi bacteriophage with a potential for biocontrol of luminous vibriosis in hatchery environments , 2006 .

[31]  M. Hochberg,et al.  Antagonistic coevolution with parasites increases the cost of host deleterious mutations , 2006, Proceedings of the Royal Society B: Biological Sciences.

[32]  J. Thompson Coevolution: The Geographic Mosaic of Coevolutionary Arms Races , 2005, Current Biology.

[33]  Hajime Unno,et al.  Therapeutic use of phage cocktail for controlling Escherichia coli O157:H7 in gastrointestinal tract of mice. , 2005, Journal of bioscience and bioengineering.

[34]  Curtis A Suttle,et al.  The viriosphere, diversity, and genetic exchange within phage communities. , 2005, Current opinion in microbiology.

[35]  Curt R. Fischer,et al.  The coexistence of Escherichia coli serotype O157:H7 and its specific bacteriophage in continuous culture. , 2004, FEMS microbiology letters.

[36]  R. P. Ross,et al.  Evaluation of a Cocktail of Three Bacteriophages for Biocontrol of Escherichia coli O157:H7 , 2004, Applied and Environmental Microbiology.

[37]  M. Weinbauer Ecology of prokaryotic viruses. , 2004, FEMS microbiology reviews.

[38]  J. Bull,et al.  Population and evolutionary dynamics of phage therapy , 2004, Nature Reviews Microbiology.

[39]  A. Buckling,et al.  Population mixing accelerates coevolution , 2003 .

[40]  M. Mathur,et al.  Bacteriophage therapy: an alternative to conventional antibiotics. , 2003, The Journal of the Association of Physicians of India.

[41]  L. Chao,et al.  Mechanisms of coexistence of a bacteria and a bacteriophage in a spatially homogeneous environment , 2003 .

[42]  Curt R. Fischer,et al.  Coevolution of Bacteriophage PP01 and Escherichia coli O157:H7 in Continuous Culture , 2003, Applied and Environmental Microbiology.

[43]  B. Charlesworth,et al.  Biological and biomedical implications of the co-evolution of pathogens and their hosts , 2002, Nature Genetics.

[44]  B. Andresen,et al.  Genomic analysis of uncultured marine viral communities , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[45]  C. Miranda,et al.  Bacterial resistance to oxytetracycline in Chilean salmon farming , 2002 .

[46]  V. Jansen,et al.  The Evolution of Parasite Virulence, Superinfection, and Host Resistance , 2002, The American Naturalist.

[47]  Paul B Rainey,et al.  Antagonistic coevolution between a bacterium and a bacteriophage , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[48]  Otta,et al.  Bacteriological study of shrimp, Penaeus monodon Fabricius, hatcheries in India , 2001 .

[49]  R. Lenski,et al.  Linking genetic change to community evolution: insights from studies of bacteria and bacteriophage , 2000 .

[50]  J. Bull,et al.  Virulence evolution in a virus obeys a trade off , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[51]  J. Mittler,et al.  Host-Parasite Coexistence: The Role of Spatial Refuges in Stabilizing Bacteria-Phage Interactions , 1996, The American Naturalist.

[52]  I. Karunasagar,et al.  Mass mortality of Penaeus monodon larvae due to antibiotic-resistant Vibrio harveyi infection , 1994 .

[53]  A. Guarino,et al.  Antibiotic resistance in Gram-negative bacteria from cultured catfish and aquaculture ponds , 1991 .

[54]  R. Lenski,et al.  Constraints on the Coevolution of Bacteria and Virulent Phage: A Model, Some Experiments, and Predictions for Natural Communities , 1985, The American Naturalist.

[55]  F. Twort,et al.  PHAGE THERAPY , 1983, The Lancet.

[56]  F. M. Stewart,et al.  A Complex Community in a Simple Habitat: An Experimental Study with Bacteria and Phage , 1977 .