Adaptation and self-organization in evolutionary algorithms

Abbreviated Abstract: The objective of Evolutionary Computation is to solve practical problems (e.g. optimization, data mining) by simulating the mechanisms of natural evolution. This thesis addresses several topics related to adaptation and self-organization in evolving systems with the overall aims of improving the performance of Evolutionary Algorithms (EA), understanding its relation to natural evolution, and incorporating new mechanisms for mimicking complex biological systems.

[1]  Chungnan Lee,et al.  On the harmonious mating strategy through tabu search , 2003, Inf. Sci..

[2]  Víctor M Eguíluz,et al.  Coevolution of dynamical states and interactions in dynamic networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Francisco Herrera,et al.  Hybrid crossover operators for real-coded genetic algorithms: an experimental study , 2005, Soft Comput..

[4]  Carlos Artemio Coello-Coello,et al.  Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art , 2002 .

[5]  Kalyanmoy Deb,et al.  A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.

[6]  E. Sandgren,et al.  Nonlinear Integer and Discrete Programming in Mechanical Design Optimization , 1990 .

[7]  David E. Clark,et al.  Evolutionary algorithms in computer-aided molecular design , 1996, J. Comput. Aided Mol. Des..

[8]  Stuart A. Kauffman,et al.  The origins of order , 1993 .

[9]  Richard M. Friedberg,et al.  A Learning Machine: Part I , 1958, IBM J. Res. Dev..

[10]  D. Sornette,et al.  Vere-Jones' self-similar branching model. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  H. Eugene Stanley,et al.  Dynamics of North American breeding bird populations , 1998, Nature.

[12]  Shinn-Ying Ho,et al.  Intelligent evolutionary algorithms for large parameter optimization problems , 2004, IEEE Trans. Evol. Comput..

[13]  J. Willis Age and Area , 1926, The Quarterly Review of Biology.

[14]  Stuart A. Kauffman,et al.  Requirements for evolvability in complex systems: orderly dynamics and frozen components , 1990 .

[15]  J. Miller,et al.  Guidelines: From artificial evolution to computational evolution: a research agenda , 2006, Nature Reviews Genetics.

[16]  J. K. Kinnear,et al.  Advances in Genetic Programming , 1994 .

[17]  Alain Pétrowski,et al.  A clearing procedure as a niching method for genetic algorithms , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[18]  K. Holsinger The neutral theory of molecular evolution , 2004 .

[19]  K. Krishnakumar,et al.  Applications of evolutionary algorithms to aerospace problems : A survey , 1996 .

[20]  L Kaufman,et al.  Symmetry breaking and coarsening in spatially distributed evolutionary processes including sexual reproduction and disruptive selection. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[21]  N. Packard,et al.  Connectivity and Catastrophe — Towards a General Theory of Evolution , 2000 .

[22]  Dirk Thierens,et al.  An Adaptive Pursuit Strategy for Allocating Operator Probabilities , 2005, BNAIC.

[23]  Wim Hordijk,et al.  A Measure of Landscapes , 1996, Evolutionary Computation.

[24]  Bing Li,et al.  A novel stochastic optimization algorithm , 2000, IEEE Trans. Syst. Man Cybern. Part B.

[25]  David E. Goldberg,et al.  The Practitioner's Role in Competent Search and Optimization Using Genetic Algorithms , 2001 .

[26]  Markus P. J. Fromherz,et al.  A Framework for On-line Adaptive Control of Problem Solving , 2001 .

[27]  Ruhul A. Sarker,et al.  Credit assignment in adaptive evolutionary algorithms , 2006, GECCO '06.

[28]  D. Goldberg,et al.  Linkage learning through probabilistic expression , 2000 .

[29]  Zbigniew J. Czech,et al.  Selection Schemes in Evolutionary Algorithms , 2002, Intelligent Information Systems.

[30]  Mitsuo Gen,et al.  A tutorial survey of job-shop scheduling problems using genetic algorithms—I: representation , 1996 .

[31]  Garrison W. Greenwood,et al.  Workforce-constrained Preventive Maintenance Scheduling Using Evolution Strategies , 2000, Decis. Sci..

[32]  F. C. Santos,et al.  Scale-free networks provide a unifying framework for the emergence of cooperation. , 2005, Physical review letters.

[33]  Y. J. Cao,et al.  Evolutionary programming , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[34]  L. Leslie Gardner,et al.  Dow AgroSciences Uses Simulation-Based Optimization to Schedule the New-Product Development Process , 2004, Interfaces.

[35]  James Smith,et al.  A tutorial for competent memetic algorithms: model, taxonomy, and design issues , 2005, IEEE Transactions on Evolutionary Computation.

[36]  Stephen F. Smith,et al.  Boosting stochastic problem solvers through online self-analysis of performance , 2003 .

[37]  Atidel B. Hadj-Alouane,et al.  A dual genetic algorithm for bounded integer programs James C. Bean, Atidel Ben Hadj-Alouane. , 1993 .

[38]  Mark A. Bedau,et al.  Can Unrealistic Computer Models Illuminate Theoretical Biology , 1999 .

[39]  C. Adami,et al.  Critical and near-critical branching processes. , 1999, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  C. Floudas,et al.  Global Optimization in Generalized Geometric Programming , 1997, Encyclopedia of Optimization.

[41]  Enrique Alba,et al.  The exploration/exploitation tradeoff in dynamic cellular genetic algorithms , 2005, IEEE Transactions on Evolutionary Computation.

[42]  Hyun-Kyo Jung,et al.  Optimal design of permanent-magnet motor using autotuning niching genetic algorithm , 2003 .

[43]  R. Solé,et al.  Are critical phenomena relevant to large-scale evolution? , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[44]  Xin Yao,et al.  Evolving artificial neural networks , 1999, Proc. IEEE.

[45]  Georges R. Harik,et al.  Finding Multimodal Solutions Using Restricted Tournament Selection , 1995, ICGA.

[46]  Heinz Mühlenbein,et al.  Predictive Models for the Breeder Genetic Algorithm I. Continuous Parameter Optimization , 1993, Evolutionary Computation.

[47]  Thomas Bäck,et al.  An evolutionary approach to combinatorial optimization problems , 1994, CSC '94.

[48]  Bernard Manderick,et al.  Fine-Grained Parallel Genetic Algorithms , 1989, ICGA.

[49]  B. Birren,et al.  Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae , 2004, Nature.

[50]  Andreas Schwienhorst,et al.  Genetic algorithm for the design of molecules with desired properties , 2002, J. Comput. Aided Mol. Des..

[51]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[52]  Alex A. Freitas,et al.  A survey of evolutionary algorithms for data mining and knowledge discovery , 2003 .

[53]  Enrique Alba,et al.  Selection intensity in cellular evolutionary algorithms for regular lattices , 2005, IEEE Transactions on Evolutionary Computation.

[54]  Agata Fronczak,et al.  Self-organized criticality and coevolution of network structure and dynamics. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[55]  Seymour E. Goodman,et al.  Introduction to the Design and Analysis of Algorithms , 1977 .

[56]  Luca Maria Gambardella,et al.  Metaheuristics in Stochastic Combinatorial Optimization: a Survey , 2006 .

[57]  D. Fell,et al.  The small world of metabolism , 2000, Nature Biotechnology.

[58]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[59]  Yamir Moreno,et al.  On the robustness of complex heterogeneous gene expression networks. , 2005, Biophysical chemistry.

[60]  József Szabados,et al.  Trends and Applications in Constructive Approximation , 2006 .

[61]  Q. Ouyang,et al.  The yeast cell-cycle network is robustly designed. , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[62]  James Smith,et al.  On Appropriate Adaptation Levels for the Learning of Gene Linkage , 2002, Genetic Programming and Evolvable Machines.

[63]  M. A. Muñoz,et al.  Scale-free networks from varying vertex intrinsic fitness. , 2002, Physical review letters.

[64]  Jasmina Arifovic EVOLUTIONARY ALGORITHMS IN MACROECONOMIC MODELS , 2000, Macroeconomic Dynamics.

[65]  Nils Tönshoff,et al.  Implementation and Computational Results , 1997 .

[66]  Yigal D. Nochomovitz,et al.  Highly designable phenotypes and mutational buffers emerge from a systematic mapping between network topology and dynamic output. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[67]  Kiyoshi Tanaka,et al.  Genetic Algorithms on NK-Landscapes: Effects of Selection, Drift, Mutation, and Recombination , 2003, EvoWorkshops.

[68]  P. Comba,et al.  Part I. Theory , 2007 .

[69]  Paulien Hogeweg,et al.  Spiral wave structure in pre-biotic evolution: hypercycles stable against parasites , 1991 .

[70]  D V Foster,et al.  Network growth models and genetic regulatory networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[71]  David E. Goldberg,et al.  Probabilistic Crowding: Deterministic Crowding with Probabilistic Replacement , 1999 .

[72]  D. Zeidler,et al.  Evolutionary algorithms and their application to optimal control studies , 2001 .

[73]  Enrique Alba,et al.  Parallelism and evolutionary algorithms , 2002, IEEE Trans. Evol. Comput..

[74]  Samir W. Mahfoud A Comparison of Parallel and Sequential Niching Methods , 1995, ICGA.

[75]  B. Burlando The Fractal Dimension of Taxonomic Systems , 1990 .

[76]  Bryant A. Julstrom,et al.  Adaptive operator probabilities in a genetic algorithm that applies three operators , 1997, SAC '97.

[77]  Martin Mandischer,et al.  Representation and Evolution of Neural Networks , 1993 .

[78]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[79]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[80]  John H. Holland,et al.  Outline for a Logical Theory of Adaptive Systems , 1962, JACM.

[81]  B. V. Babu,et al.  Modified differential evolution (MDE) for optimization of non-linear chemical processes , 2006, Comput. Chem. Eng..

[82]  Kalyanmoy Deb,et al.  Optimizing Engineering Designs Using a Combined Genetic Search , 1997, ICGA.

[83]  Hans-Paul Schwefel,et al.  Numerical Optimization of Computer Models , 1982 .

[84]  Q. Pham Dynamic optimization of chemical engineering processes by an evolutionary method , 1998 .

[85]  Q. Tuan Pham,et al.  Competitive Evolution: A Natural Approach to Operator Selection , 1993, Evo Workshops.

[86]  Heinz Mühlenbein,et al.  The parallel genetic algorithm as function optimizer , 1991, Parallel Comput..

[87]  Lalit M. Patnaik,et al.  Adaptive probabilities of crossover and mutation in genetic algorithms , 1994, IEEE Trans. Syst. Man Cybern..

[88]  Peter J. Bentley,et al.  Optimising the Performance of a Formula One Car Using a Genetic Algorithm , 2004, PPSN.

[89]  Cláudio F. Lima,et al.  Revisiting evolutionary algorithms with on-the-fly population size adjustment , 2006, GECCO '06.

[90]  J. Arora,et al.  A study of mathematical programmingmethods for structural optimization. Part II: Numerical results , 1985 .

[91]  Jürgen Branke,et al.  Evolutionary optimization in uncertain environments-a survey , 2005, IEEE Transactions on Evolutionary Computation.

[92]  Francisco Herrera,et al.  Hierarchical distributed genetic algorithms , 1999 .

[93]  Paul Erdös,et al.  On random graphs, I , 1959 .

[94]  Zbigniew Michalewicz,et al.  Parameter Control in Evolutionary Algorithms , 2007, Parameter Setting in Evolutionary Algorithms.

[95]  V. L. Anderson Evolutionary Operation : A Method for Increasing Industrial Productivity , 1970 .

[96]  M. Newman Self-organized criticality, evolution and the fossil extinction record , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[97]  Shengxiang Yang Adaptive crossover in genetic algorithms using statistics mechanism , 2002 .

[98]  Janet Wiles,et al.  A comparison of neutral landscapes - NK, NKp and NKq , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[99]  Jorge J. Moré,et al.  Benchmarking optimization software with performance profiles , 2001, Math. Program..

[100]  G. Yule,et al.  A Mathematical Theory of Evolution Based on the Conclusions of Dr. J. C. Willis, F.R.S. , 1925 .

[101]  Tobias Blickle,et al.  Theory of evolutionary algorithms and application to system synthesis , 1997 .

[102]  Roy L. Johnston,et al.  Applications of Evolutionary Computation in Chemistry , 2004 .

[103]  Francisco Herrera,et al.  Two-Loop Real-Coded Genetic Algorithms with Adaptive Control of Mutation Step Sizes , 2000, Applied Intelligence.

[104]  Hiroki Sayama,et al.  Visualizing Evolutionary Dynamics of Self-Replicators: A Graph-Based Approach , 2006, Artificial Life.

[105]  W. Hsu,et al.  Algorithm selection for sorting and probabilistic inference: a machine learning-based approach , 2003 .

[106]  M. Newman,et al.  Extinction, diversity and survivorship of taxa in the fossil record , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[107]  Margaret J. Eppstein,et al.  Emergent mating topologies in spatially structured genetic algorithms , 2006, GECCO.

[108]  Francisco Herrera,et al.  Fuzzy adaptive genetic algorithms: design, taxonomy, and future directions , 2003, Soft Comput..

[109]  N. Packard,et al.  Evolution of evolvability via adaptation of mutation rates. , 2003, Bio Systems.

[110]  Hiroki Sayama,et al.  Spontaneous pattern formation and genetic invasion in locally mating and competing populations. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[111]  B. Bollobás The evolution of random graphs , 1984 .

[112]  Q. Tuan Pham Evolutionary optimization of dynamic control problems accelerated by progressive step reduction , 2005, GECCO '05.

[113]  Hugo de Garis,et al.  A Robust Algorithm for Solving Nonlinear Programming Problems , 2002, Int. J. Comput. Math..

[114]  Keigo Watanabe,et al.  Evolutionary Optimization of Constrained Problems , 2004 .

[115]  L.S. Kang,et al.  An evolutionary algorithm of contracting search space based on partial ordering relation for constrained optimization problems , 2002, Fifth International Conference on Algorithms and Architectures for Parallel Processing, 2002. Proceedings..

[116]  Bryant A. Julstrom,et al.  What Have You Done for Me Lately? Adapting Operator Probabilities in a Steady-State Genetic Algorithm , 1995, ICGA.

[117]  M. Huynen,et al.  Smoothness within ruggedness: the role of neutrality in adaptation. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[118]  A. Wagner,et al.  Evolution of gene networks by gene duplications: a mathematical model and its implications on genome organization. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[119]  Ruhul A. Sarker,et al.  The Self-Organization of Interaction Networks for Nature-Inspired Optimization , 2008, IEEE Transactions on Evolutionary Computation.

[120]  Peter Ross,et al.  Adapting Operator Settings in Genetic Algorithms , 1998, Evolutionary Computation.

[121]  L. Altenberg The evolution of evolvability in genetic programming , 1994 .

[122]  Christian Igel,et al.  Evolutionary Optimization of Neural Systems: The Use of Strategy Adaptation , 2005 .

[123]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[124]  Francisco Herrera,et al.  Tackling Real-Coded Genetic Algorithms: Operators and Tools for Behavioural Analysis , 1998, Artificial Intelligence Review.

[125]  Wolfgang Banzhaf,et al.  Artificial Chemistries – Towards Constructive Dynamical Systems , 2004 .

[126]  James E. Baker,et al.  Adaptive Selection Methods for Genetic Algorithms , 1985, International Conference on Genetic Algorithms.

[127]  H. Barbosa On Adaptive Operator Probabilities in Real Coded Genetic Algorithms , 2000 .

[128]  M. Wall,et al.  Design of gene circuits: lessons from bacteria , 2004, Nature Reviews Genetics.

[129]  S. Bornholdt,et al.  Topological evolution of dynamical networks: global criticality from local dynamics. , 2000, Physical review letters.

[130]  Annie S. Wu,et al.  Emergence of genomic self-similarity in location independent representations , 2006, Genetic Programming and Evolvable Machines.

[131]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[132]  J. Crutchfield,et al.  Metastable evolutionary dynamics: Crossing fitness barriers or escaping via neutral paths? , 1999, Bulletin of mathematical biology.

[133]  Joshua L. Payne,et al.  Speciation by Self-organizing Barriers to Gene Flow in Simulated Populations with Localized Mating , 2006 .

[134]  K. H. Wolfe,et al.  Molecular evidence for an ancient duplication of the entire yeast genome , 1997, Nature.

[135]  Fernando G. Lobo,et al.  A parameter-less genetic algorithm , 1999, GECCO.

[136]  David G. Green,et al.  Ordered asynchronous processes in multi-agent systems , 2005 .

[137]  Olof Görnerup,et al.  Objects that make objects: the population dynamics of structural complexity , 2004, Journal of The Royal Society Interface.

[138]  Sarika Jalan,et al.  Coupled dynamics on networks , 2005 .

[139]  Carlos A. Coello Coello,et al.  Self-adaptive penalties for GA-based optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[140]  G. Wagner HOMOLOGUES, NATURAL KINDS AND THE EVOLUTION OF MODULARITY , 1996 .

[141]  Lothar Thiele,et al.  A Comparison of Selection Schemes Used in Evolutionary Algorithms , 1996, Evolutionary Computation.

[142]  Peter J. Fleming,et al.  An Overview of Evolutionary Algorithms in Multiobjective Optimization , 1995, Evolutionary Computation.

[143]  Günter P. Wagner,et al.  Complex Adaptations and the Evolution of Evolvability , 2005 .

[144]  A. Barabasi,et al.  Hierarchical Organization of Modularity in Metabolic Networks , 2002, Science.

[145]  E. Wagner International Series of Numerical Mathematics , 1963 .

[146]  Tang,et al.  Self-Organized Criticality: An Explanation of 1/f Noise , 2011 .

[147]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[148]  Risto Miikkulainen,et al.  Competitive Coevolution through Evolutionary Complexification , 2011, J. Artif. Intell. Res..

[149]  James E. Baker,et al.  Reducing Bias and Inefficienry in the Selection Algorithm , 1987, ICGA.

[150]  Jack P. C. Kleijnen,et al.  Kriging interpolation in simulation: a survey , 2004, Proceedings of the 2004 Winter Simulation Conference, 2004..

[151]  S. Kauffman A proposal for using the ensemble approach to understand genetic regulatory networks. , 2004, Journal of theoretical biology.

[152]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[153]  Rainer Kolisch,et al.  Experimental investigation of heuristics for resource-constrained project scheduling: An update , 2006, Eur. J. Oper. Res..

[154]  R. Albert,et al.  The large-scale organization of metabolic networks , 2000, Nature.

[155]  A. Barabasi,et al.  Network biology: understanding the cell's functional organization , 2004, Nature Reviews Genetics.

[156]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[157]  Kalyanmoy Deb,et al.  A Comparative Analysis of Selection Schemes Used in Genetic Algorithms , 1990, FOGA.

[158]  S. N. Kramer,et al.  An Augmented Lagrange Multiplier Based Method for Mixed Integer Discrete Continuous Optimization and Its Applications to Mechanical Design , 1994 .

[159]  John R. Woodward,et al.  No Free Lunch, Program Induction and Combinatorial Problems , 2003, EuroGP.

[160]  Madhu Menon,et al.  Enabling Computational Nanotechnology through JavaGenes in a Cycle Scavenging Environment , 2002 .

[161]  J. Sepkoski A compendium of fossil marine animal families, 2nd edition. , 1992, Contributions in biology and geology.

[162]  Alejandro Heredia-Langner,et al.  Constrained de novo peptide identification via multi-objective optimization , 2004, 18th International Parallel and Distributed Processing Symposium, 2004. Proceedings..

[163]  M. Newman,et al.  Effects of neutral selection on the evolution of molecular species , 1997, adap-org/9712005.

[164]  Kenneth A. De Jong,et al.  An Analysis of the Effects of Neighborhood Size and Shape on Local Selection Algorithms , 1996, PPSN.

[165]  Ricard V. Solé,et al.  A Model of Large-Scale proteome Evolution , 2002, Adv. Complex Syst..

[166]  WU ANNIES. The Proportional Genetic Algorithm : Gene Expression in a Genetic Algorithm , 2022 .

[167]  S. Boccaletti,et al.  Synchronization of chaotic systems , 2001 .

[168]  Kalyanmoy Deb,et al.  Massive Multimodality, Deception, and Genetic Algorithms , 1992, PPSN.

[169]  David J. Evans,et al.  Volumetric segmentation of brain images using parallel genetic algorithms , 2002, IEEE Transactions on Medical Imaging.

[170]  N. Stenseth,et al.  COEVOLUTION IN ECOSYSTEMS: RED QUEEN EVOLUTION OR STASIS? , 1984, Evolution; international journal of organic evolution.

[171]  Zbigniew Michalewicz,et al.  Evolutionary optimization of constrained problems , 1994 .

[172]  Gregory Hornby,et al.  ALPS: the age-layered population structure for reducing the problem of premature convergence , 2006, GECCO.

[173]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[174]  Soteris A. Kalogirou,et al.  Artificial intelligence for the modeling and control of combustion processes: a review , 2003 .

[175]  Steffen Christensen,et al.  What can we learn from No Free Lunch? a first attempt to characterize the concept of a searchable function , 2001 .

[176]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[177]  L. Gladden,et al.  Development of a Genetic Algorithm for Molecular Scale Catalyst Design , 1997 .

[178]  Alden H. Wright,et al.  Genetic Algorithms for Real Parameter Optimization , 1990, FOGA.

[179]  David E. Goldberg,et al.  Adaptive Hybrid Genetic Algorithm for Groundwater Remediation Design , 2005 .

[180]  Erick Cantú-Paz,et al.  A Survey of Parallel Genetic Algorithms , 2000 .

[181]  D. Green,et al.  Connectivity and Catastrophe-Towards a General Theory of Evolution , 2019 .

[182]  David E. Goldberg,et al.  Decision making in a hybrid genetic algorithm , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[183]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[184]  A. Lesne Complex Networks: from Graph Theory to Biology , 2006 .

[185]  Hans-Paul Schwefel,et al.  How to analyse evolutionary algorithms , 2002, Theor. Comput. Sci..

[186]  Jim Smith,et al.  Operator and parameter adaptation in genetic algorithms , 1997, Soft Comput..

[187]  Youngki Lee,et al.  Power-law distribution of family names in Japanese societies , 1999, cond-mat/9912035.

[188]  Tapabrata Ray,et al.  An Evolutionary Algorithm for Constrained Optimization , 2000, GECCO.

[189]  B. Drossel Biological evolution and statistical physics , 2001, cond-mat/0101409.

[190]  Florian Greil,et al.  Dynamics of critical Kauffman networks under asynchronous stochastic update. , 2005, Physical review letters.

[191]  Christian Igel,et al.  Operator adaptation in evolutionary computation and its application to structure optimization of neural networks , 2003, Neurocomputing.

[192]  A. Vázquez Growing network with local rules: preferential attachment, clustering hierarchy, and degree correlations. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[193]  Panos M. Pardalos,et al.  A Collection of Test Problems for Constrained Global Optimization Algorithms , 1990, Lecture Notes in Computer Science.

[194]  Hartmut Pohlheim,et al.  Genetic and evolutionary algorithm toolbox for use with matlab , 1994 .

[195]  D M Raup,et al.  A kill curve for Phanerozoic marine species , 1991, Paleobiology.

[196]  Gergely Palla,et al.  Preferential attachment of communities: The same principle, but a higher level , 2006 .

[197]  Peter J. Fleming,et al.  Evolutionary algorithms in control systems engineering: a survey , 2002 .

[198]  R. Sarker,et al.  Genetic Algorithms for Solving a Class of Constrained Nonlinear Integer Programs , 2001 .

[199]  D. Zanette,et al.  At the boundary between biological and cultural evolution: the origin of surname distributions. , 2002, Journal of theoretical biology.

[200]  Hussein A. Abbass,et al.  An evolutionary artificial neural networks approach for breast cancer diagnosis , 2002, Artif. Intell. Medicine.

[201]  John J. Grefenstette,et al.  Optimization of Control Parameters for Genetic Algorithms , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[202]  Michael Lynch,et al.  The Origin of Subfunctions and Modular Gene Regulation , 2005, Genetics.

[203]  Enrique Alba,et al.  The influence of grid shape and asynchronicity on cellular evolutionary algorithms , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[204]  Enrique Alba,et al.  Parallel heterogeneous genetic algorithms for continuous optimization , 2003, Proceedings International Parallel and Distributed Processing Symposium.

[205]  P. Schuster,et al.  From sequences to shapes and back: a case study in RNA secondary structures , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[206]  Jianzhi Zhang Evolution by gene duplication: an update , 2003 .

[207]  M. Paczuski Networks as Renormalized Models for Emergent Behavior in Physical Systems , 2005, physics/0502028.

[208]  Bart Selman,et al.  Algorithm Portfolio Design: Theory vs. Practice , 1997, UAI.

[209]  Xin Yao,et al.  Stochastic ranking for constrained evolutionary optimization , 2000, IEEE Trans. Evol. Comput..

[210]  W. Banzhaf,et al.  Genetic programming using genotype-phenotype mapping from linear genomes into linear phenotypes , 1996 .

[211]  Q. Hou,et al.  Beam orientation optimization for IMRT by a hybrid method of the genetic algorithm and the simulated dynamics. , 2003, Medical physics.

[212]  Feng-Sheng Wang,et al.  A hybrid method of evolutionary algorithms for mixed-integer nonlinear optimization problems , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[213]  Ruhul A. Sarker,et al.  Use of statistical outlier detection method in adaptive evolutionary algorithms , 2006, GECCO.

[214]  H. Mühlenbein,et al.  From Recombination of Genes to the Estimation of Distributions I. Binary Parameters , 1996, PPSN.

[215]  C. Adjiman,et al.  A global optimization method, αBB, for general twice-differentiable constrained NLPs—II. Implementation and computational results , 1998 .

[216]  Alan S. Morris,et al.  Performance improvement of self-adaptive evolutionary methods with a dynamic lower bound , 2002, Inf. Process. Lett..

[217]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[218]  Piero P. Bonissone,et al.  Evolutionary algorithms + domain knowledge = real-world evolutionary computation , 2006, IEEE Transactions on Evolutionary Computation.

[219]  Q. Pham EFFECT OF NUMERICAL ERRORS ON THE PERFORMANCE OF OPTIMIZATION METHODS , 2005 .

[220]  V. Latora,et al.  Complex networks: Structure and dynamics , 2006 .

[221]  R. G. Fenton,et al.  A MIXED INTEGER-DISCRETE-CONTINUOUS PROGRAMMING METHOD AND ITS APPLICATION TO ENGINEERING DESIGN OPTIMIZATION , 1991 .

[222]  J. S. Martins,et al.  Computer simulations of statistical models and dynamic complex systems , 2004 .

[223]  Thomas Bäck,et al.  Evolutionary computation: comments on the history and current state , 1997, IEEE Trans. Evol. Comput..

[224]  Martina Gorges-Schleuter,et al.  ASPARAGOS An Asynchronous Parallel Genetic Optimization Strategy , 1989, ICGA.