Deep-sea diversity patterns are shaped by energy availability

The deep ocean is the largest and least-explored ecosystem on Earth, and a uniquely energy-poor environment. The distribution, drivers and origins of deep-sea biodiversity remain unknown at global scales. Here we analyse a database of more than 165,000 distribution records of Ophiuroidea (brittle stars), a dominant component of sea-floor fauna, and find patterns of biodiversity unlike known terrestrial or coastal marine realms. Both patterns and environmental predictors of deep-sea (2,000–6,500 m) species richness fundamentally differ from those found in coastal (0–20 m), continental shelf (20–200 m), and upper-slope (200–2,000 m) waters. Continental shelf to upper-slope richness consistently peaks in tropical Indo-west Pacific and Caribbean (0–30°) latitudes, and is well explained by variations in water temperature. In contrast, deep-sea species show maximum richness at higher latitudes (30–50°), concentrated in areas of high carbon export flux and regions close to continental margins. We reconcile this structuring of oceanic biodiversity using a species–energy framework, with kinetic energy predicting shallow-water richness, while chemical energy (export productivity) and proximity to slope habitats drive deep-sea diversity. Our findings provide a global baseline for conservation efforts across the sea floor, and demonstrate that deep-sea ecosystems show a biodiversity pattern consistent with ecological theory, despite being different from other planetary-scale habitats.

[1]  Robert K. Colwell,et al.  Estimating terrestrial biodiversity through extrapolation. , 1994, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[2]  J. Andrew Royle,et al.  Estimating species richness and accumulation by modeling species occurrence and detectability. , 2006, Ecology.

[3]  Dirk Eddelbuettel,et al.  Rcpp: Seamless R and C++ Integration , 2011 .

[4]  Sabine Stöhr,et al.  Global Diversity of Brittle Stars (Echinodermata: Ophiuroidea) , 2012, PloS one.

[5]  Jennifer A. Miller Species Distribution Modeling , 2010 .

[6]  Richard Field,et al.  Predictions and tests of climate‐based hypotheses of broad‐scale variation in taxonomic richness , 2004 .

[7]  R. Fraser,et al.  The Species Richness-Energy Hypothesis in a System Where Historical Factors Are Thought to Prevail: Coral Reefs , 1996, The American Naturalist.

[8]  P. Lambshead,et al.  Latitudinal diversity gradients in the deep sea with special reference to North Atlantic nematodes , 2000 .

[9]  M. Rex,et al.  Global-scale latitudinal patterns of species diversity in the deep-sea benthos , 1993, Nature.

[10]  James H. Brown,et al.  The rate of DNA evolution: effects of body size and temperature on the molecular clock. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Trevor Hastie,et al.  Making better biogeographical predictions of species’ distributions , 2006 .

[12]  K. Rohde Latitudinal gradients in species diversity: the search for the primary cause , 1992 .

[13]  A. Peterson,et al.  New developments in museum-based informatics and applications in biodiversity analysis. , 2004, Trends in ecology & evolution.

[14]  R. Bivand,et al.  Tools for Reading and Handling Spatial Objects , 2016 .

[15]  Richard Field,et al.  Spatial patterns of woody plant and bird diversity: functional relationships or environmental effects? , 2008 .

[16]  Roberto Danovaro,et al.  Deep, diverse and definitely different: unique attributes of the world's largest ecosystem , 2010 .

[17]  P. Upchurch,et al.  The latitudinal biodiversity gradient through deep time. , 2014, Trends in ecology & evolution.

[18]  Carlos M. Duarte,et al.  Thresholds of hypoxia for marine biodiversity , 2008, Proceedings of the National Academy of Sciences.

[19]  A. Rogers The role of the oceanic oxygen minima in generating biodiversity in the deep sea , 2000 .

[20]  Conrad Sanderson,et al.  Armadillo C++ Linear Algebra Library , 2016 .

[21]  M. Cauvin,et al.  Une Nouvelle séquence stratifiée pour la préhistoire en Syrie semi-désertique. , 1990 .

[22]  A. Rowden,et al.  A Southern Hemisphere Bathyal Fauna Is Distributed in Latitudinal Bands , 2011, Current Biology.

[23]  R. Holt Population dynamics in two-patch environments: Some anomalous consequences of an optimal habitat distribution , 1985 .

[24]  P. Tyler,et al.  Man and the Last Great Wilderness: Human Impact on the Deep Sea , 2011, PloS one.

[25]  J. Alroy FAIR SAMPLING OF TAXONOMIC RICHNESS AND UNBIASED ESTIMATION OF ORIGINATION AND EXTINCTION RATES , 2010 .

[26]  P. Falkowski,et al.  Photosynthetic rates derived from satellite‐based chlorophyll concentration , 1997 .

[27]  A. Chao,et al.  Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. , 2012, Ecology.

[28]  J. Hjort,et al.  The Depths of the Ocean: A General Account of the Modern Science of Oceanography Based Largely on the Scientific Researches of the Norwegian Steamer Michael Sars in the North Atlantic , 2015 .

[29]  W. Jetz,et al.  Global patterns and determinants of vascular plant diversity , 2007, Proceedings of the National Academy of Sciences.

[30]  F. WilsonG.D.,et al.  Marine species richness , 1993 .

[31]  A. Clarke,et al.  LARGE-SCALE BIOGEOGRAPHIC PATTERNS IN MARINE MOLLUSKS: A CONFLUENCE.OF HISTORY AND PRODUCTIVITY? , 2005 .

[32]  Ken Caldeira,et al.  Seasonal rhythms of net primary production and particulate organic carbon flux to depth describe the efficiency of biological pump in the global ocean , 2007 .

[33]  J. Kerr,et al.  Does climate limit species richness by limiting individual species’ ranges? , 2014, Proceedings of the Royal Society B: Biological Sciences.

[34]  Martyn Plummer,et al.  JAGS: Just Another Gibbs Sampler , 2012 .

[35]  Les Watling,et al.  A proposed biogeography of the deep ocean floor , 2013 .

[36]  Roger Bivand,et al.  Bindings for the Geospatial Data Abstraction Library , 2015 .

[37]  N. S. Cooper Solar output and global warming , 1993, Nature.

[38]  J. Wilkin,et al.  Ocean Interpolation by Four-Dimensional Weighted Least Squares—Application to the Waters around Australasia , 2002 .

[39]  K. Ridgway,et al.  Mapping ocean properties in regions of complex topography , 2002 .

[40]  Kevin J Gaston,et al.  Climate, energy and diversity , 2006, Proceedings of the Royal Society B: Biological Sciences.

[41]  J. Andrew Royle,et al.  Hierarchical Bayes estimation of species richness and occupancy in spatially replicated surveys , 2008 .

[42]  C. Amante,et al.  ETOPO1 arc-minute global relief model : procedures, data sources and analysis , 2009 .

[43]  M. Raupach,et al.  First insights into the biodiversity and biogeography of the Southern Ocean deep sea , 2007, Nature.

[44]  David H. Wright,et al.  Species-energy theory: an extension of species-area theory , 1983 .

[45]  W. D. Kissling,et al.  Spatial autocorrelation and the selection of simultaneous autoregressive models , 2007 .

[46]  A. Gelfand,et al.  Modelling species diversity through species level hierarchical modelling , 2005 .

[47]  R. Danovaro,et al.  Temperature impacts on deep‐sea biodiversity , 2015, Biological reviews of the Cambridge Philosophical Society.

[48]  M. Austin Spatial prediction of species distribution: an interface between ecological theory and statistical modelling , 2002 .

[49]  Walter Jetz,et al.  Global patterns and predictors of marine biodiversity across taxa , 2010, Nature.

[50]  J. Andrew Royle,et al.  ESTIMATING SITE OCCUPANCY RATES WHEN DETECTION PROBABILITIES ARE LESS THAN ONE , 2002, Ecology.

[51]  J. Andrew Royle,et al.  Estimating Size and Composition of Biological Communities by Modeling the Occurrence of Species , 2005 .

[52]  A. Warén,et al.  A Source‐Sink Hypothesis for Abyssal Biodiversity , 2004, American Naturalist.

[53]  J. Witman,et al.  The relationship between regional and local species diversity in marine benthic communities: a global perspective. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[54]  D. Tittensor,et al.  Species–energy relationships in deep-sea molluscs , 2011, Biology Letters.

[55]  M. Loreau,et al.  Global relationship between phytoplankton diversity and productivity in the ocean , 2014, Nature Communications.

[56]  L. Levin Oxygen minimum zone Benthos: Adaptation and community response to hypoxia , 2003 .

[57]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[58]  Alan G. Smith,et al.  Oceanic gateways as a critical factor to initiate icehouse Earth , 2003, Journal of the Geological Society.