A Few Logs Suffice to Build (almost) All Trees: Part II

[1]  Sampath Kannan,et al.  A robust model for finding optimal evolutionary trees , 1993, Algorithmica.

[2]  Tandy J. Warnow,et al.  A few logs suffice to build (almost) all trees (I) , 1999, Random Struct. Algorithms.

[3]  Mike A. Steel,et al.  Reconstructing Phylogenies From Nucleotide Pattern Probabilities: A Survey and some New Results , 1998, Discret. Appl. Math..

[4]  Paul W. Goldberg,et al.  Evolutionary trees can be learned in polynomial time in the two-state general Markov model , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[5]  F. Sperling Molecular Systematics, 2nd ed. , 1997 .

[6]  Andris Ambainis,et al.  Nearly tight bounds on the learnability of evolution , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[7]  P. Erdös,et al.  A few logs suffice to build (almost) all trees (l): part I , 1997 .

[8]  Kevin Atteson,et al.  The Performance of Neighbor-Joining Algorithms of Phylogeny Recronstruction , 1997, COCOON.

[9]  Olivier Gascuel,et al.  Inferring evolutionary trees with strong combinatorial evidence , 1997, Theor. Comput. Sci..

[10]  Tandy J. Warnow,et al.  Parsimony is Hard to Beat , 1997, COCOON.

[11]  K. Strimmer,et al.  Bayesian Probabilities and Quartet Puzzling , 1997 .

[12]  Tao Jiang,et al.  A more efficient approximation scheme for tree alignment , 1997, RECOMB '97.

[13]  Jaime Cohen,et al.  Numerical taxonomy on data: experimental results , 1997, SODA '97.

[14]  P. Erdös,et al.  Local Quartet Splits of a Binary Tree Infer All Quartet Splits Via One Dyadic Inference Rule , 1996, Comput. Artif. Intell..

[15]  Lusheng Wang,et al.  Improved Approximation Algorithms for Tree Alignment , 1996, J. Algorithms.

[16]  D. Hillis Inferring complex phytogenies , 1996, Nature.

[17]  K. Strimmer,et al.  Quartet Puzzling: A Quartet Maximum-Likelihood Method for Reconstructing Tree Topologies , 1996 .

[18]  Sampath Kannan,et al.  Efficient algorithms for inverting evolution , 1996, STOC '96.

[19]  Mikkel Thorup,et al.  On the approximability of numerical taxonomy (fitting distances by tree metrics) , 1996, SODA '96.

[20]  D. Hillis Inferring complex phylogenies. , 1996, Nature.

[21]  D. Aldous PROBABILITY DISTRIBUTIONS ON CLADOGRAMS , 1996 .

[22]  M. Steel,et al.  Extension Operations on Sets of Leaf-Labeled Trees , 1995 .

[23]  D. Hillis Approaches for Assessing Phylogenetic Accuracy , 1995 .

[24]  J. Huelsenbeck Performance of Phylogenetic Methods in Simulation , 1995 .

[25]  Sampath KannanyNovember Eecient Algorithms for Inverting Evolution , 1995 .

[26]  Tao Jiang,et al.  Aligning sequences via an evolutionary tree: complexity and approximation , 1994, STOC '94.

[27]  James K. M. Brown Probabilities of Evolutionary Trees , 1994 .

[28]  M. Steel Recovering a tree from the leaf colourations it generates under a Markov model , 1994 .

[29]  László A. Székely,et al.  Reconstructing Trees When Sequence Sites Evolve at Variable Rates , 1994, J. Comput. Biol..

[30]  Tao Jiang,et al.  On the Complexity of Multiple Sequence Alignment , 1994, J. Comput. Biol..

[31]  J. Huelsenbeck,et al.  SUCCESS OF PHYLOGENETIC METHODS IN THE FOUR-TAXON CASE , 1993 .

[32]  W. Brown,et al.  Rates and patterns of base change in the small subunit ribosomal RNA gene. , 1993, Genetics.

[33]  A. Wilson,et al.  The recent African genesis of humans. , 1992, Scientific American.

[34]  M. Steel The complexity of reconstructing trees from qualitative characters and subtrees , 1992 .

[35]  T. Warnow Combinatorial algorithms for constructing phylogenetic trees , 1992 .

[36]  Joseph T. Chang,et al.  Reconstruction of Evolutionary Trees from Pairwise Distributions on Current Species , 1992 .

[37]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[38]  Nicholas C. Wormald,et al.  On the Distribution of Lengths of Evolutionary Trees , 1990, SIAM J. Discret. Math..

[39]  J Hein,et al.  A new method that simultaneously aligns and reconstructs ancestral sequences for any number of homologous sequences, when the phylogeny is given. , 1989, Molecular biology and evolution.

[40]  N. Saitou,et al.  Relative Efficiencies of the Fitch-Margoliash, Maximum-Parsimony, Maximum-Likelihood, Minimum-Evolution, and Neighbor-joining Methods of Phylogenetic Tree Construction in Obtaining the Correct Tree , 1989 .

[41]  Piotr Rudnicki,et al.  A Fast Algorithm for Constructing Trees from Distance Matrices , 1989, Inf. Process. Lett..

[42]  V. Rich Personal communication , 1989, Nature.

[43]  S. Gupta,et al.  Statistical decision theory and related topics IV , 1988 .

[44]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[45]  W. H. Day Computational complexity of inferring phylogenies from dissimilarity matrices. , 1987, Bulletin of mathematical biology.

[46]  W. Brown,et al.  Nuclear and mitochondrial DNA comparisons reveal extreme rate variation in the molecular clock. , 1986, Science.

[47]  A. Dress,et al.  Reconstructing the shape of a tree from observed dissimilarity data , 1986 .

[48]  Robert E. Tarjan,et al.  Fast Algorithms for Finding Nearest Common Ancestors , 1984, SIAM J. Comput..

[49]  J. Felsenstein Numerical Methods for Inferring Evolutionary Trees , 1982, The Quarterly Review of Biology.

[50]  H. Colonius,et al.  Tree structures for proximity data , 1981 .

[51]  M. Kimura Estimation of evolutionary distances between homologous nucleotide sequences. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[52]  J. Felsenstein Cases in which Parsimony or Compatibility Methods will be Positively Misleading , 1978 .

[53]  J. A. Cavender Taxonomy with confidence , 1978 .

[54]  W. A. Beyer,et al.  Additive evolutionary trees. , 1977, Journal of theoretical biology.

[55]  J. Farris A Probability Model for Inferring Evolutionary Trees , 1973 .

[56]  D. Kendall,et al.  Mathematics in the Archaeological and Historical Sciences , 1971, The Mathematical Gazette.

[57]  P. Buneman The Recovery of Trees from Measures of Dissimilarity , 1971 .

[58]  E. Harding The probabilities of rooted tree-shapes generated by random bifurcation , 1971, Advances in Applied Probability.

[59]  J. Neyman MOLECULAR STUDIES OF EVOLUTION: A SOURCE OF NOVEL STATISTICAL PROBLEMS* , 1971 .

[60]  Ye.A Smolenskii A method for the linear recording of graphs , 1963 .