Quantifying the impact of dispersion, acidity and porosity of Mo/HZSM-5 on the performance in methane dehydroaromatization

[1]  Oscar W. Perez-Lopez,et al.  Tuning the acidity and reducibility of Fe/ZSM-5 catalysts for methane dehydroaromatization , 2019, Fuel.

[2]  F. Kapteijn,et al.  Structure–performance descriptors and the role of Lewis acidity in the methanol-to-propylene process , 2018, Nature Chemistry.

[3]  Do Heui Kim,et al.  Effect of Si/Al2 ratios in Mo/H-MCM-22 on methane dehydroaromatization , 2018 .

[4]  F. Kapteijn,et al.  Relevance of the Mo-precursor state in H-ZSM-5 for methane dehydroaromatization , 2018 .

[5]  M. Fedin,et al.  Confined Carbon Mediating Dehydroaromatization of Methane over Mo/ZSM‐5 , 2017, Angewandte Chemie.

[6]  Xinhe Bao,et al.  Direct Conversion of Methane to Value-Added Chemicals over Heterogeneous Catalysts: Challenges and Prospects. , 2017, Chemical reviews.

[7]  E. Hensen,et al.  Stable Mo/HZSM-5 methane dehydroaromatization catalysts optimized for high-temperature calcination-regeneration , 2017 .

[8]  F. Kapteijn,et al.  Suppression of the Aromatic Cycle in Methanol‐to‐Olefins Reaction over ZSM‐5 by Post‐Synthetic Modification Using Calcium , 2016 .

[9]  Andreas Martin,et al.  Synergy between vanadium and molybdenum in bimetallic ZSM-5 supported catalysts for ethylene ammoxidation , 2016 .

[10]  Stanley W Botchway,et al.  Molybdenum Speciation and its Impact on Catalytic Activity during Methane Dehydroaromatization in Zeolite ZSM‐5 as Revealed by Operando X‐Ray Methods , 2016, Angewandte Chemie.

[11]  Arnaud Travert,et al.  Probing zeolites by vibrational spectroscopies. , 2015, Chemical Society reviews.

[12]  Israel E. Wachs,et al.  Identification of molybdenum oxide nanostructures on zeolites for natural gas conversion , 2015, Science.

[13]  Yang Song,et al.  A clue to exploration of the pathway of coke formation on Mo/HZSM-5 catalyst in the non-oxidative methane dehydroaromatization at 1073 K , 2014 .

[14]  W. Fan,et al.  Textural and catalytic properties of Mo loaded hierarchical meso-/microporous lamellar MFI and MWW zeolites for direct methane conversion , 2014 .

[15]  G. Hutchings,et al.  Catalytic aromatization of methane. , 2014, Chemical Society reviews.

[16]  K. Pant,et al.  Direct conversion of natural gas to higher hydrocarbons: A review , 2013 .

[17]  X. Bao,et al.  Recent progress in methane dehydroaromatization: From laboratory curiosities to promising technology , 2013 .

[18]  Juewen Liu,et al.  Characteristic and Mechanism of Methane Dehydroaromatization over Zn-Based/HZSM-5 Catalysts under Conditions of Atmospheric Pressure and Supersonic Jet Expansion , 2011 .

[19]  Agustín Martínez,et al.  Improvement of catalyst stability during methane dehydroaromatization (MDA) on Mo/HZSM-5 comprising intracrystalline mesopores , 2011 .

[20]  Charles A. Roberts,et al.  Molecular Structural Determination of Molybdena in Different Environments: Aqueous Solutions, Bulk Mixed Oxides, and Supported MoO3 Catalysts , 2010 .

[21]  C. Powell,et al.  Surface sensitivity of X-ray photoelectron spectroscopy☆ , 2009 .

[22]  Zinfer R. Ismagilov,et al.  Direct conversion of methane on Mo/ZSM-5 catalysts to produce benzene and hydrogen: achievements and perspectives , 2008 .

[23]  C. Pham‐Huu,et al.  Methane dehydro-aromatization on Mo/ZSM-5: About the hidden role of Brønsted acid sites , 2008 .

[24]  J. Moulijn,et al.  Study of Methane Dehydroaromatization on Impregnated Mo/ZSM-5 Catalysts and Characterization of Nanostructured Molybdenum Phases and Carbonaceous Deposits , 2007 .

[25]  C. Au,et al.  Effects of acidification and basification of impregnating solution on the performance of Mo/HZSM-5 in methane aromatization , 2007 .

[26]  C. Au,et al.  XPS, XAES, and TG/DTA characterization of deposited carbon in methane dehydroaromatization over Ga–Mo/ZSM-5 catalyst , 2007 .

[27]  C. Pham‐Huu,et al.  Quantitative measurement of the Brönsted acid sites in solid acids: toward a single-site design of Mo-modified ZSM-5 zeolite. , 2006, The journal of physical chemistry. B.

[28]  Xin Chen,et al.  Identification of the coke accumulation and deactivation sites of Mo2C/HZSM-5 catalyst in CH4 dehydroaromatization , 2004 .

[29]  X. Bao,et al.  Methane dehydroaromatization over Mo/HZSM-5 catalysts in the absence of oxygen: effects of silanation in HZSM-5 zeolite , 2004 .

[30]  X. Bao,et al.  Creating Mesopores in ZSM-5 Zeolite by Alkali Treatment: A New Way to Enhance the Catalytic Performance of Methane Dehydroaromatization on Mo/HZSM-5 Catalysts , 2003 .

[31]  X. Bao,et al.  Direct conversion of methane under nonoxidative conditions , 2003 .

[32]  X. Bao,et al.  Remarkable Improvement on the Methane Aromatization Reaction: A Highly Selective and Coking-Resistant Catalyst , 2002 .

[33]  C. Au,et al.  The effect of calcination temperature on the catalytic performance of 2 wt.% Mo/HZSM-5 in methane aromatization , 2002 .

[34]  X. Bao,et al.  A high coking-resistance catalyst for methane aromatization. , 2001, Chemical communications.

[35]  X. Bao,et al.  Mo/HMCM-22 Catalysts for Methane Dehydroaromatization: A Multinuclear MAS NMR Study , 2001 .

[36]  E. Iglesia,et al.  Synthesis, Structural Characterization, and Catalytic Properties of Tungsten-Exchanged H-ZSM5† , 2001 .

[37]  X. Bao,et al.  Methane dehydro‐aromatization over Mo/MCM‐22 catalysts: a highly selective catalyst for the formation of benzene , 2000 .

[38]  X. Bao,et al.  In Situ 1H MAS NMR Spectroscopic Observation of Proton Species on a Mo‐Modified HZSM‐5 Zeolite Catalyst for the Dehydroaromatization of Methane , 2000 .

[39]  X. Bao,et al.  MAS NMR, ESR and TPD studies of Mo/HZSM‐5 catalysts: evidence for the migration of molybdenum species into the zeolitic channels , 2000 .

[40]  E. Iglesia,et al.  Genesis of methane activation sites in Mo-exchanged H–ZSM-5 catalysts , 2000 .

[41]  Xinwen Guo,et al.  Methane dehydro-aromatization over Mo/HZSM-5 in the absence of oxygen : A multinuclear solid-state NMR study of the interaction between supported Mo species and HZSM-5 zeolite with different crystal sizes , 1999 .

[42]  Aleksander Jablonski,et al.  NIST Electron Inelastic-Mean-Free-Path Database 71, Version 1.0 , 1999 .

[43]  Yide Xu,et al.  Recent advances in methane dehydro-aromatization over transition metal ion-modified zeolite catalysts under non-oxidative conditions , 1999 .

[44]  Bernard P. A. Grandjean,et al.  Bifunctional Behavior of Mo/HZSM-5 Catalysts in Methane Aromatization , 1999 .

[45]  Y. H. Kim,et al.  Structure and Density of Mo and Acid Sites in Mo-Exchanged H-ZSM5 Catalysts for Nonoxidative Methane Conversion , 1999 .

[46]  W. Cui,et al.  Study on the induction period of methane aromatization over Mo/HZSM-5: partial reduction of Mo species and formation of carbonaceous deposit , 1999 .

[47]  Linsheng Wang,et al.  Bifunctional Catalysis of Mo/HZSM-5 in the Dehydroaromatization of Methane to Benzene and Naphthalene XAFS/TG/DTA/MASS/FTIR Characterization and Supporting Effects , 1999 .

[48]  R. Howe,et al.  Molybdenum ZSM-5 zeolite catalysts for the conversion of methane to benzene , 1998 .

[49]  Linsheng Wang,et al.  Methane dehydrogenation and aromatization in the absence of oxygen on MoHZSM-5: A study on the interaction between Mo species and HZSM-5 by using 27Al and 29Si MAS NMR , 1997 .

[50]  Tao Zhang,et al.  Dehydro-oligomerization of Methane to Ethylene and Aromatics over Molybdenum/HZSM-5 Catalyst , 1995 .

[51]  Yide Xu,et al.  Methane activation without using oxidants over Mo/HZSM-5 zeolite catalysts , 1994 .

[52]  C. A. Emeis Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts , 1993 .

[53]  J. C. Ashley,et al.  Interaction of low-energy electrons with silicon dioxide , 1981 .