Identifying codes in the direct product of a complete graph and some special graphs

Abstract Let G = ( V ( G ) , E ( G ) ) be a graph. For x ∈ V ( G ) , let N G [ x ] be the closed neighborhood of x . A subset D of V ( G ) is called an identifying code of G if the sets N G [ x ] ∩ D are nonempty and distinct for all vertices x in G . The minimum cardinality of an identifying code in a graph G is denoted by γ I D ( G ) . In this paper, we study the identifying code of the direct product K n × G , where K n is a complete graph. We first give a lower bound of γ I D ( K n × G ) when G is a regular graph. Then we compute γ I D ( K n × G ) for G being a cycle and a complete bipartite graph, respectively.

[1]  Jason Hedetniemi On identifying codes in the Cartesian product of a path and a complete graph , 2016, J. Comb. Optim..

[2]  Simon Litsyn,et al.  Exact Minimum Density of Codes Identifying Vertices in the Square Grid , 2005, SIAM J. Discret. Math..

[3]  Xiao-Dong Hu,et al.  Identifying codes of cycles with odd orders , 2008, Eur. J. Comb..

[4]  Douglas F. Rall,et al.  Identifying codes of the direct product of two cliques , 2014, Eur. J. Comb..

[5]  Sylvain Gravier,et al.  Identifying codes of cycles , 2006, Eur. J. Comb..

[6]  Tero Laihonen,et al.  Optimal Identifying Codes in Cycles and Paths , 2012, Graphs Comb..

[7]  Sylvain Gravier,et al.  Identifying Codes of Cartesian Product of Two Cliques of the Same Size , 2008, Electron. J. Comb..

[8]  Nathalie Bertrand,et al.  1-identifying Codes on Trees , 2005, Australas. J Comb..

[9]  Nathalie Bertrand,et al.  Identifying and locating-dominating codes on chains and cycles , 2004, Eur. J. Comb..

[10]  Kaishun Wang,et al.  Identifying codes of corona product graphs , 2014, Discret. Appl. Math..

[11]  Min Feng,et al.  Identifying Codes of Lexicographic Product of Graphs , 2012, Electron. J. Comb..

[12]  Iiro S. Honkala,et al.  On Identifying Codes in Binary Hamming Spaces , 2002, J. Comb. Theory, Ser. A.

[13]  Svante Janson,et al.  On the size of identifying codes in binary hypercubes , 2008, J. Comb. Theory A.

[14]  Changhong Lu,et al.  Identifying codes and locating-dominating sets on paths and cycles , 2011, Discret. Appl. Math..

[15]  André Raspaud,et al.  On the size of identifying codes in triangle-free graphs , 2010, Discret. Appl. Math..

[16]  Mark G. Karpovsky,et al.  On a New Class of Codes for Identifying Vertices in Graphs , 1998, IEEE Trans. Inf. Theory.