A Pipeline Chip for Quasi Arithmetic Coding

SUMMARY A combination of a software and a systolic hardware implementation for the Quasi Arithmetic compression algorithm is presented. The hardware is implemented as a pipeline hardware implementation. The implementation doesn’t change the the algorithm. It just split it into two parts. The combination of parallel software and pipeline hardware can give very fast compression without decline of the compression efficiency.

[1]  J. Vitter,et al.  Practical Implementations of Arithmetic Coding , 1991 .

[2]  M. V. Wilkes,et al.  Micro-programming and the design of the control circuits in an electronic digital computer , 1953 .

[3]  James A. Storer,et al.  On the design and implementation of a lossless data compression and decompression chip , 1993 .

[4]  Hongbing Zhu,et al.  A Pipeline Structure for the Sequential Boltzmann Machine (Special Section of Papers Selected from ITC-CSCC '98) , 1999 .

[5]  Richard Clark Pasco,et al.  Source coding algorithms for fast data compression , 1976 .

[6]  Jeffrey Scott Vitter,et al.  Analysis of arithmetic coding for data compression , 1991, [1991] Proceedings. Data Compression Conference.

[7]  Ian H. Witten,et al.  The zero-frequency problem: Estimating the probabilities of novel events in adaptive text compression , 1991, IEEE Trans. Inf. Theory.

[8]  Hongbing Zhu,et al.  Introducing a parallel transit evaluation method into the sequential Boltzmann machine , 1996 .

[9]  Ian H. Witten,et al.  Arithmetic coding for data compression , 1987, CACM.

[10]  Glen G. Langdon,et al.  An Overview of the Basic Principles of the Q-Coder Adaptive Binary Arithmetic Coder , 1988, IBM J. Res. Dev..

[11]  Jörg Henkel,et al.  Arithmetic coding for low power embedded system design , 2000, Proceedings DCC 2000. Data Compression Conference.

[12]  S. Golomb Run-length encodings. , 1966 .

[13]  Shmuel Tomi Klein,et al.  Parallel Huffman decoding , 2000, Proceedings DCC 2000. Data Compression Conference.

[14]  Samir S. Husson,et al.  Microprogramming: principles and practices , 1971, SIGM.

[15]  Paul G. Howard,et al.  The design and analysis of efficient lossless data compression systems , 1993 .

[16]  Alistair Moffat,et al.  A probability-ratio approach to approximate binary arithmetic coding , 1997, IEEE Trans. Inf. Theory.

[17]  Peter M. Kogge,et al.  The Architecture of Pipelined Computers , 1981 .

[18]  Leonard S. Bobrow,et al.  Fundamentals Of Electrical Engineering , 1995 .

[19]  Jorma Rissanen,et al.  A multiplication-free multialphabet arithmetic code , 1989, IEEE Trans. Commun..

[20]  Jeffrey Scott Vitter,et al.  Design and analysis of fast text compression based on quasi-arithmetic coding , 1993, [Proceedings] DCC `93: Data Compression Conference.

[21]  Jeffrey Scott Vitter,et al.  Design and Analysis of Fast Text Compression Based on Quasi-Arithmetic Coding , 1994, Inf. Process. Manag..

[22]  Youn-Long Lin,et al.  Code generation of nested loops for DSP processors with heterogeneous registers and structural pipelining , 1999, TODE.

[23]  Peter Elias,et al.  Universal codeword sets and representations of the integers , 1975, IEEE Trans. Inf. Theory.

[24]  Robert F. Rice,et al.  Some practical universal noiseless coding techniques , 1979 .

[25]  Norman P. Jouppi,et al.  Available instruction-level parallelism for superscalar and superpipelined machines , 1989, ASPLOS III.

[26]  David A. Huffman,et al.  A method for the construction of minimum-redundancy codes , 1952, Proceedings of the IRE.

[27]  Jeffrey Scott Vitter,et al.  Parallel Lossless Image Compression Using Huffman and Arithmetic Coding , 1996, Inf. Process. Lett..

[28]  Karl R. Stromberg,et al.  Probability for Analysts , 1994, The Mathematical Gazette.