Ten Years of Gabor-Domain Optical Coherence Microscopy

Gabor-domain optical coherence microscopy (GDOCM) is a high-definition imaging technique leveraging principles of low-coherence interferometry, liquid lens technology, high-speed imaging, and precision scanning. GDOCM achieves isotropic 2 μm resolution in 3D, effectively breaking the cellular resolution limit of optical coherence tomography (OCT). In the ten years since its introduction, GDOCM has been used for cellular imaging in 3D in a number of clinical applications, including dermatology, oncology and ophthalmology, as well as to characterize materials in industrial applications. Future developments will enhance the structural imaging capability of GDOCM by adding functional modalities, such as fluorescence and elastography, by estimating thicknesses on the nano-scale, and by incorporating machine learning techniques.

[1]  J. Fujimoto,et al.  The Development of OCT , 2015 .

[2]  J. Rolland,et al.  Gabor Domain Optical Coherence Microscopy of Human Skin , 2013 .

[3]  Jannick P. Rolland,et al.  Gabor-domain optical coherence microscopy with integrated dual-axis MEMS scanner for fast 3D imaging and metrology , 2015, SPIE Optifab.

[4]  A. Canciamilla,et al.  Polarization- and Phase-Sensitive Low-Coherence Interferometry Setup for the Characterization of Integrated Optical Components , 2009, Journal of Lightwave Technology.

[5]  Robert Koprowski,et al.  The Use of Optical Coherence Tomography in Dental Diagnostics: A State-of-the-Art Review , 2017, Journal of healthcare engineering.

[6]  Kevin P Thompson,et al.  Broadband astigmatism-corrected Czerny-Turner spectrometer. , 2010, Optics express.

[7]  Kye-Sung Lee,et al.  Three-dimensional imaging of normal skin and nonmelanoma skin cancer with cellular resolution using Gabor domain optical coherence microscopy , 2012, Journal of biomedical optics.

[8]  Panomsak Meemon,et al.  Gabor-based fusion technique for Optical Coherence Microscopy. , 2010, Optics express.

[9]  Lida P. Hariri,et al.  Diagnosing lung carcinomas with optical coherence tomography. , 2015, Annals of the American Thoracic Society.

[10]  William J. Brown,et al.  Functional optical coherence tomography: principles and progress , 2015, Physics in medicine and biology.

[11]  Gangjun Liu,et al.  Optical Coherence Tomography Angiography , 2016, Investigative ophthalmology & visual science.

[12]  Zhongping Chen,et al.  Noninvasive imaging of oral premalignancy and malignancy. , 2005, Journal of biomedical optics.

[13]  P. Meemon,et al.  Gabor domain optical coherence microscopy , 2008, BiOS.

[14]  Nicolas Godbout,et al.  Dual-modality needle probe for combined fluorescence imaging and three-dimensional optical coherence tomography. , 2013, Optics letters.

[15]  Kevin J. Parker,et al.  Perspectives and advances in optical elastography , 2019, BiOS.

[16]  James G. Fujimoto,et al.  Optical Coherence Tomography: Introduction , 2001 .

[17]  Ruikang K. Wang,et al.  Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications , 2017, Progress in Retinal and Eye Research.

[18]  J G Fujimoto,et al.  High-resolution optical coherence microscopy for high-speed, in vivo cellular imaging. , 2003, Optics letters.

[19]  Brett E. Bouma,et al.  Dual-modality fluorescence and full-field optical coherence microscopy for biomedical imaging applications , 2012, Biomedical optics express.

[20]  Patrice Tankam,et al.  Optical Assessment of Soft Contact Lens Edge-Thickness , 2016, Optometry and vision science : official publication of the American Academy of Optometry.

[21]  Eric Swanson,et al.  The Development, Commercialization, and Impact of Optical Coherence Tomography , 2016, Investigative ophthalmology & visual science.

[22]  B. Devaux,et al.  Imaging of non-tumorous and tumorous human brain tissues with full-field optical coherence tomography☆ , 2013, NeuroImage: Clinical.

[23]  Wolfgang Drexler,et al.  State-of-the-art retinal optical coherence tomography , 2008, Progress in Retinal and Eye Research.

[24]  J. Méteau,et al.  Supercontinuum sources in optical coherence tomography: A state of the art and the application to scan-free time domain correlation techniques and depth dependant dispersion compensation , 2012 .

[25]  Patrice Tankam,et al.  Capabilities of Gabor-domain optical coherence microscopy for the assessment of corneal disease , 2019, Journal of biomedical optics.

[26]  A. Rollins,et al.  Intracoronary optical coherence tomography: a comprehensive review clinical and research applications. , 2009, JACC. Cardiovascular interventions.

[27]  Kostadinka Bizheva,et al.  250 kHz, 1.5 µm resolution SD-OCT for in-vivo cellular imaging of the human cornea. , 2018, Biomedical optics express.

[28]  P. Georges,et al.  Motion artifact suppression in full-field optical coherence tomography. , 2010, Applied optics.

[29]  Houssine Makhlouf,et al.  Simultaneous optically sectioned fluorescence and optical coherence microscopy with full-field illumination. , 2012, Optics letters.

[30]  Daniel L Marks,et al.  Interferometric Synthetic Aperture Microscopy , 2007, OFC/NFOEC 2008 - 2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference.

[31]  Harald Sattmann,et al.  A thermal light source technique for optical coherence tomography , 2000 .

[32]  High-resolution full-field optical coherence microscopy using a broadband light-emitting diode. , 2016, Optics express.

[33]  C. Boccara,et al.  Ultrahigh-resolution full-field optical coherence tomography. , 2004, Applied optics.

[34]  PANOMSAK MEEMON,et al.  Spectral fusing Gabor domain optical coherence microscopy. , 2016, Optics letters.

[35]  P. Escobar,et al.  Optical coherence tomography as a diagnostic aid to visual inspection and colposcopy for preinvasive and invasive cancer of the uterine cervix , 2006, International Journal of Gynecologic Cancer.

[36]  Leopold Schmetterer,et al.  Anterior segment optical coherence tomography , 2018, Progress in Retinal and Eye Research.

[37]  Hao F. Zhang,et al.  Visible-light optical coherence tomography: a review , 2017, Journal of biomedical optics.

[38]  Victor X D Yang,et al.  Optical coherence elastography: current status and future applications. , 2011, Journal of biomedical optics.

[39]  Bernhard Baumann,et al.  Polarization Sensitive Optical Coherence Tomography: A Review of Technology and Applications , 2017 .

[40]  J. Rolland,et al.  Crawling wave optical coherence elastography. , 2016, Optics letters.

[41]  Kye-Sung Lee,et al.  Parallelized multi–graphics processing unit framework for high-speed Gabor-domain optical coherence microscopy , 2014, Journal of biomedical optics.

[42]  Freddy T. Nguyen,et al.  Optical coherence tomography: a review of clinical development from bench to bedside. , 2007, Journal of biomedical optics.

[43]  Angelika Unterhuber,et al.  Optical coherence tomography today: speed, contrast, and multimodality , 2014, Journal of biomedical optics.

[44]  Steven G. Adie,et al.  Emerging Approaches for High-Resolution Imaging of Tissue Biomechanics With Optical Coherence Elastography , 2016, IEEE Journal of Selected Topics in Quantum Electronics.

[45]  Virgil-Florin Duma,et al.  MEMS-based handheld scanning probe with pre-shaped input signals for distortion-free images in Gabor-domain optical coherence microscopy. , 2016, Optics express.

[46]  V. R. Shidlovski,et al.  Superluminescent Diode Light Sources for OCT , 2008 .

[47]  R. A. Leitgeb,et al.  En face optical coherence tomography: a technology review [Invited]. , 2019, Biomedical optics express.

[48]  J. Fujimoto,et al.  In vivo endoscopic optical biopsy with optical coherence tomography. , 1997, Science.

[49]  O Stachs,et al.  In vivo three-dimensional confocal laser scanning microscopy of corneal surface and epithelium , 2008, British Journal of Ophthalmology.

[50]  Mathias Fink,et al.  Dynamic multimodal full-field optical coherence tomography and fluorescence structured illumination microscopy , 2017, Journal of biomedical optics.

[51]  Jannick P. Rolland,et al.  3D cellular imaging of the cornea with Gabor-domain optical coherence microscopy , 2019, BiOS.

[52]  Freddy T. Nguyen,et al.  Intraoperative evaluation of breast tumor margins with optical coherence tomography. , 2009, Cancer research.

[53]  Patrice Tankam,et al.  Gabor-domain optical coherence tomography to aid in Mohs resection of basal cell carcinoma. , 2019, Journal of the American Academy of Dermatology.

[54]  Eric Clarkson,et al.  Dispersion control with a Fourier-domain optical delay line in a fiber-optic imaging interferometer. , 2005, Applied optics.

[55]  Panomsak Meemon,et al.  Assessment of a liquid lens enabled in vivo optical coherence microscope. , 2010, Applied optics.

[56]  Thomas Klein,et al.  High-speed OCT light sources and systems [Invited]. , 2017, Biomedical optics express.

[57]  Yang Xu,et al.  Review of optical coherence tomography in oncology , 2017, Journal of biomedical optics.

[58]  Kelsey M. Kennedy,et al.  A Review of Optical Coherence Elastography: Fundamentals, Techniques and Prospects , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[59]  A. Boccara,et al.  En face coherence microscopy [Invited]. , 2017, Biomedical optics express.

[60]  Shang Wang,et al.  Optical coherence elastography for tissue characterization: a review , 2015, Journal of biophotonics.

[61]  Stephen A. Boppart,et al.  Real-time in vivo computed optical interferometric tomography , 2013, Nature Photonics.

[62]  Jinxin Huang,et al.  Performance analysis of optical coherence tomography in the context of a thickness estimation task , 2015, Journal of biomedical optics.

[63]  R. Jain,et al.  Cancer imaging by optical coherence tomography: preclinical progress and clinical potential , 2012, Nature Reviews Cancer.

[64]  Jannick P Rolland,et al.  In vivo thickness dynamics measurement of tear film lipid and aqueous layers with optical coherence tomography and maximum-likelihood estimation. , 2016, Optics letters.

[65]  Kevin J Parker,et al.  Comparative study of shear wave-based elastography techniques in optical coherence tomography , 2017, Journal of biomedical optics.

[66]  Thilo Gambichler,et al.  Recent advances in clinical application of optical coherence tomography of human skin , 2015, Clinical, cosmetic and investigational dermatology.

[67]  Petra Wilder-Smith,et al.  Noninvasive imaging of oral premalignancy and malignancy , 2005, SPIE BiOS.

[68]  C. Hitzenberger,et al.  Polarization sensitive optical coherence tomography - a review [Invited]. , 2017, Biomedical optics express.

[69]  Eva Lankenau,et al.  Detection of cervical intraepithelial neoplasia by using optical coherence tomography in combination with microscopy , 2017, Journal of biomedical optics.

[70]  Jon Holmes,et al.  Advances in optical coherence tomography in dermatology—a review , 2018, Journal of biomedical optics.

[71]  Marc Rubinstein,et al.  Clinical optical coherence tomography in head and neck oncology: overview and outlook , 2013 .

[72]  David D Sampson,et al.  Static and dynamic imaging of alveoli using optical coherence tomography needle probes. , 2012, Journal of applied physiology.

[73]  M. Fink,et al.  In vivo high resolution human corneal imaging using full-field optical coherence tomography. , 2018, Biomedical optics express.

[74]  Supraja Murali,et al.  Three-dimensional adaptive microscopy using embedded liquid lens. , 2009, Optics letters.

[75]  Hiroshi Mashimo,et al.  Optical coherence tomography in gastroenterology: a review and future outlook , 2017, Journal of biomedical optics.

[76]  Hyeong Soo Nam,et al.  Spectroscopic optical coherence tomography: A review of concepts and biomedical applications , 2018 .