Sensitivity-Informed Bayesian Inference for Home PLC Network Models with Unknown Parameters

Bayesian inference is used to calibrate a bottom-up home PLC network model with unknown loads and wires at frequencies up to 30 MHz. A network topology with over 50 parameters is calibrated using global sensitivity analysis and transitional Markov Chain Monte Carlo (TMCMC). The sensitivity-informed Bayesian inference computes Sobol indices for each network parameter and applies TMCMC to calibrate the most sensitive parameters for a given network topology. A greedy random search with TMCMC is used to refine the discrete random variables of the network. This results in a model that can accurately compute the transfer function despite noisy training data and a high dimensional parameter space. The model is able to infer some parameters of the network used to produce the training data, and accurately computes the transfer function under extrapolative scenarios.

[1]  M. Gomes,et al.  Smart Metering Technology , 2018, Microgrids Design and Implementation.

[2]  Stefano Tarantola,et al.  Sensitivity Analysis as an Ingredient of Modeling , 2000 .

[3]  Xu Zhu,et al.  State-of-Art Power Line Communications Channel Modelling , 2013, ITQM.

[4]  Jafar Rezaei,et al.  Realizing smart meter connectivity: Analyzing the competing technologies Power line communication, mobile telephony, and radio frequency using the best worst method , 2019, Renewable and Sustainable Energy Reviews.

[5]  D. A. Frickey Conversions between S, Z, Y, H, ABCD, and T parameters which are valid for complex source and load impedances , 1994 .

[6]  Ateeq Ur Rehman,et al.  Investigation of Deterministic, Statistical and Parametric NB-PLC Channel Modeling Techniques for Advanced Metering Infrastructure , 2020, Energies.

[7]  H. Haario,et al.  An adaptive Metropolis algorithm , 2001 .

[8]  Klaus Dostert,et al.  A multipath model for the powerline channel , 2002, IEEE Trans. Commun..

[9]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[10]  Scott M. Lynch,et al.  Bayesian Posterior Predictive Checks for Complex Models , 2004 .

[11]  Michael I. Miller,et al.  REPRESENTATIONS OF KNOWLEDGE IN COMPLEX SYSTEMS , 1994 .

[12]  Petr Mlýnek,et al.  Possibilities of Broadband Power Line Communications for Smart Home and Smart Building Applications , 2021, Sensors.

[13]  Ning Wang,et al.  A PLC Channel Model for Home Area Networks , 2018, Energies.

[14]  Fei Yu,et al.  Networking of Smart Meters Based on Time-Varying Feature of Low-Voltage Power Line Channel in Microgrid , 2021, Complex..

[15]  Jianye Ching,et al.  Application of the transitional Markov chain Monte Carlo algorithm to probabilistic site characterization , 2016 .

[16]  S. Chib,et al.  Understanding the Metropolis-Hastings Algorithm , 1995 .

[17]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[18]  R. L. Winkler,et al.  Scoring Rules for Continuous Probability Distributions , 1976 .

[19]  M. Rosenblatt Remarks on Some Nonparametric Estimates of a Density Function , 1956 .

[20]  Charles J. Geyer,et al.  Practical Markov Chain Monte Carlo , 1992 .

[21]  Heikki Haario,et al.  DRAM: Efficient adaptive MCMC , 2006, Stat. Comput..