A wideband fractional-N ring PLL with fractional-spur suppression using spectrally shaped segmentation

Fractional-N PLLs play an important role in both wireless and wireline circuits. Finer timing resolution is needed to reduce the quantization noise in the phase domain. In conventional designs, a phase interpolator (PI) is used to suppress the quantization noise due to its simplicity, but at a cost of gain error and non-linearity. These sub-phase non-idealities result in large fractional spurs [2-5]. Techniques for reducing these spurs include using a PI mismatch and spur-cancellation scheme [2], digital correlation and cancellation [3], use of a successive requantizer with switched loop filter and offset charge-pump [4], and foreground calibration [5]. This paper presents a ring-oscillator based 2MHz bandwidth fractional-N PLL that uses a spectrally shaped segmented-feedback approach to alleviate fractional spurs induced by the PI non-idealities. This approach results in a compact design and, in contrast to previous work, achieves a 26dB spur reduction without need of correlation, cancellation, or calibration methods.

[1]  Giovanni Marzin,et al.  A 2.9-to-4.0GHz fractional-N digital PLL with bang-bang phase detector and 560fsrms integrated jitter at 4.5mW power , 2011, 2011 IEEE International Solid-State Circuits Conference.

[2]  Ian Galton,et al.  Spurious -Tone Suppression Techniques Applied to a Wide-Bandwidth 2.4GHz Fractional-N PLL , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[3]  K. Nguyen,et al.  A 113 dB SNR oversampling DAC with segmented noise-shaped scrambling , 1998, 1998 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, ISSCC. First Edition (Cat. No.98CH36156).

[4]  Beomsup Kim,et al.  A 1.8-GHz self-calibrated phase-locked loop with precise I/Q matching , 2000, 2000 Symposium on VLSI Circuits. Digest of Technical Papers (Cat. No.00CH37103).

[5]  Salvatore Levantino,et al.  A 3MHz-BW 3.6GHz digital fractional-N PLL with sub-gate-delay TDC, phase-interpolation divider, and digital mismatch cancellation , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[6]  Ook Kim,et al.  A 1.8-GHz self-calibrated phase-locked loop with precise I/Q matching , 2001, IEEE J. Solid State Circuits.