A nuclear function for an oncogenic microRNA as a modulator of snRNA and splicing

[1]  Yutaka Suzuki,et al.  A single m6A modification in U6 snRNA diversifies exon sequence at the 5’ splice site , 2021, Nature Communications.

[2]  Vaishali R. Moulton,et al.  Estrogen‐Induced hsa‐miR‐10b‐5p Is Elevated in T Cells From Patients With Systemic Lupus Erythematosus and Down‐Regulates Serine/Arginine‐Rich Splicing Factor 1 , 2021, Arthritis & rheumatology.

[3]  D. Corey,et al.  Argonaute binding within human nuclear RNA and its impact on alternative splicing , 2021, bioRxiv.

[4]  Joshua F. McMichael,et al.  Proteogenomic and metabolomic characterization of human glioblastoma. , 2021, Cancer cell.

[5]  R. Backofen,et al.  ChiRA: an integrated framework for chimeric read analysis from RNA-RNA interactome and RNA structurome data , 2021, GigaScience.

[6]  G. Moore,et al.  Anomalous collapses of Nares Strait ice arches leads to enhanced export of Arctic sea ice , 2021, Nature communications.

[7]  O. Regev,et al.  Splicing at the phase-separated nuclear speckle interface: a model , 2020, Nucleic acids research.

[8]  E. Chiocca,et al.  The nuclear DICER–circular RNA complex drives the deregulation of the glioblastoma cell microRNAome , 2020, Science advances.

[9]  H. Stark,et al.  Mechanism of protein-guided folding of the active site U2/U6 RNA during spliceosome activation , 2020, Science.

[10]  W. Gilbert,et al.  Regulation and Function of RNA Pseudouridylation in Human Cells. , 2020, Annual review of genetics.

[11]  O. Abdel-Wahab,et al.  Oncogenic splicing regulated by phase separation , 2020, Nature Cell Biology.

[12]  S. Yamashita,et al.  Mechanistic insights into m6A modification of U6 snRNA by human METTL16 , 2020, Nucleic acids research.

[13]  Ok Hyun Park,et al.  Molecular Mechanisms Driving mRNA Degradation by m6A Modification. , 2020, Trends in genetics : TIG.

[14]  Marcin Magnus,et al.  Rearrangements within the U6 snRNA Core during the Transition between the Two Catalytic Steps of Splicing. , 2019, Molecular cell.

[15]  Veronika A. Herzog,et al.  Time-Resolved Small RNA Sequencing Unravels the Molecular Principles of MicroRNA Homeostasis. , 2019, Molecular cell.

[16]  Shuo Gu,et al.  3' Uridylation Confers miRNAs with Non-canonical Target Repertoires. , 2019, Molecular cell.

[17]  R. Yi,et al.  Integrated analysis of directly captured microRNA targets reveals the impact of microRNAs on mammalian transcriptome , 2019, bioRxiv.

[18]  A. Pasquinelli,et al.  miRNA Targeting: Growing beyond the Seed. , 2019, Trends in genetics : TIG.

[19]  O. Bischof,et al.  Nuclear Translocation of Argonaute 2 in Cytokine-Induced Senescence , 2018, Cellular Physiology and Biochemistry.

[20]  T. Nilsen,et al.  A Novel Class of MicroRNA Recognition Elements That Function Only in Open Reading Frames , 2018, Nature Structural & Molecular Biology.

[21]  M. Hafner,et al.  Argonaute-miRNA Complexes Silence Target mRNAs in the Nucleus of Mammalian Stem Cells. , 2018, Molecular cell.

[22]  F. Nicassio,et al.  Endogenous transcripts control miRNA levels and activity in mammalian cells by target-directed miRNA degradation , 2018, Nature Communications.

[23]  D. Castanotto,et al.  A stress-induced response complex (SIRC) shuttles miRNAs, siRNAs, and oligonucleotides to the nucleus , 2018, Proceedings of the National Academy of Sciences.

[24]  María del Mar Maldonado,et al.  Targeting Rac and Cdc42 GTPases in Cancer. , 2018, Cancer research.

[25]  H. Dvinge,et al.  RNA components of the spliceosome regulate tissue- and cancer-specific alternative splicing , 2018, bioRxiv.

[26]  Desheng Xiao,et al.  Nuclear functions of mammalian MicroRNAs in gene regulation, immunity and cancer , 2018, Molecular Cancer.

[27]  H. Rupasinghe,et al.  Kinase-targeted cancer therapies: progress, challenges and future directions , 2018, Molecular Cancer.

[28]  K. Nagai,et al.  Molecular Mechanism and Evolution of Nuclear Pre-mRNA and Group II Intron Splicing: Insights from Cryo-Electron Microscopy Structures. , 2018, Chemical reviews.

[29]  S. Butcher,et al.  The life of U6 small nuclear RNA, from cradle to grave , 2018, RNA.

[30]  Qi Zhou,et al.  MicroRNA-494 promotes cancer progression and targets adenomatous polyposis coli in colorectal cancer , 2018, Molecular Cancer.

[31]  C. Lenz,et al.  Human METTL16 is a N6‐methyladenosine (m6A) methyltransferase that targets pre‐mRNAs and various non‐coding RNAs , 2017, EMBO reports.

[32]  P. Barbry,et al.  Post-transcriptional gene silencing mediated by microRNAs is controlled by nucleoplasmic Sfpq , 2017, Nature Communications.

[33]  Yang Wang,et al.  Coding and noncoding landscape of extracellular RNA released by human glioma stem cells , 2017, Nature Communications.

[34]  S. Mohammed,et al.  Nuclear phosphorylated Dicer processes double-stranded RNA in response to DNA damage , 2017, The Journal of cell biology.

[35]  Yang Xie,et al.  The U6 snRNA m6A Methyltransferase METTL16 Regulates SAM Synthetase Intron Retention , 2017, Cell.

[36]  K. Gunsalus,et al.  A non-canonical site reveals the cooperative mechanisms of microRNA-mediated silencing , 2017, Nucleic acids research.

[37]  D. Cohen,et al.  Publisher's Note , 2017, Neuroscience & Biobehavioral Reviews.

[38]  A. Bhardwaj,et al.  In situ click chemistry generation of cyclooxygenase-2 inhibitors , 2017, Nature Communications.

[39]  Anna M. Krichevsky,et al.  Genome Editing Reveals Glioblastoma Addiction to MicroRNA-10b. , 2017, Molecular therapy : the journal of the American Society of Gene Therapy.

[40]  Li Ma,et al.  Ablation of miR-10b Suppresses Oncogene-Induced Mammary Tumorigenesis and Metastasis and Reactivates Tumor-Suppressive Pathways. , 2016, Cancer research.

[41]  William A. Rennie,et al.  STarMirDB: A database of microRNA binding sites , 2016, RNA biology.

[42]  E. Chiocca,et al.  Therapeutic potential of targeting microRNA‐10b in established intracranial glioblastoma: first steps toward the clinic , 2016, EMBO molecular medicine.

[43]  Charles M. Rice,et al.  miRNA–target chimeras reveal miRNA 3′-end pairing as a major determinant of Argonaute target specificity , 2015, Nature Communications.

[44]  G. Lou,et al.  Differential distribution of U6 (RNU6-1) expression in human carcinoma tissues demonstrates the requirement for caution in the internal control gene selection for microRNA quantification. , 2015, International journal of molecular medicine.

[45]  A. Fire,et al.  Functional relevance of “seed” and “non-seed” sequences in microRNA-mediated promotion of C. elegans developmental progression , 2015, RNA.

[46]  Sjors H. W. Scheres,et al.  The architecture of the spliceosomal U4/U6.U5 tri-snRNP , 2015, Nature.

[47]  M. Yi,et al.  MicroRNA-10b inhibition reduces E2F1-mediated transcription and miR-15/16 activity in glioblastoma , 2015, Oncotarget.

[48]  J. Valcárcel,et al.  Argonaute-1 binds transcriptional enhancers and controls constitutive and alternative splicing in human cells , 2014, Proceedings of the National Academy of Sciences.

[49]  Anindita Basak,et al.  A pseudouridine residue in the spliceosome core is part of the filamentous growth program in yeast. , 2014, Cell reports.

[50]  J. Piccirilli,et al.  Evidence for a group II intron-like catalytic triplex in the spliceosome , 2014, Nature Structural &Molecular Biology.

[51]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[52]  Yongjun Chu,et al.  RNAi Factors are Present and Active in Human Cell Nuclei , 2014, Cell reports.

[53]  Heng Li Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM , 2013, 1303.3997.

[54]  D. Schiff,et al.  Oncogenic effects of miR-10b in glioblastoma stem cells , 2013, Journal of Neuro-Oncology.

[55]  S. Teo,et al.  MicroRNA-10b pleiotropically regulates invasion, angiogenicity and apoptosis of tumor cells resembling mesenchymal subtype of glioblastoma multiforme , 2012, Cell Death and Disease.

[56]  Annick Harel-Bellan,et al.  Argonaute proteins couple chromatin silencing to alternative splicing , 2012, Nature Structural &Molecular Biology.

[57]  S. Pastorino,et al.  MicroRNAs in cerebrospinal fluid identify glioblastoma and metastatic brain cancers and reflect disease activity. , 2012, Neuro-oncology.

[58]  Anna M. Krichevsky,et al.  Context effect: microRNA-10b in cancer cell proliferation, spread and death , 2011, Autophagy.

[59]  A. Lund,et al.  The miR-10 microRNA precursor family , 2011, RNA biology.

[60]  Lawrence J. Clos,et al.  A novel occluded RNA recognition motif in Prp24 unwinds the U6 RNA internal stem loop , 2011, Nucleic acids research.

[61]  Ming Yi,et al.  Human glioma growth is controlled by microRNA-10b. , 2011, Cancer research.

[62]  O. Bensaude,et al.  Inhibiting eukaryotic transcription. Which compound to choose? How to evaluate its activity? , 2011, Transcription.

[63]  Shuling Guo,et al.  Efficient and specific knockdown of small non-coding RNAs in mammalian cells and in mice , 2010, Nucleic acids research.

[64]  W. Filipowicz,et al.  Regulation of mRNA translation and stability by microRNAs. , 2010, Annual review of biochemistry.

[65]  A. Lund miR-10 in development and cancer , 2010, Cell Death and Differentiation.

[66]  Thoru Pederson,et al.  MicroRNAs with a nucleolar location. , 2009, RNA.

[67]  C. Will,et al.  The Spliceosome: Design Principles of a Dynamic RNP Machine , 2009, Cell.

[68]  R. Weinberg,et al.  Tumour invasion and metastasis initiated by microRNA-10b in breast cancer , 2007, Nature.

[69]  Martin A. M. Reijns,et al.  The Lsm2-8 complex determines nuclear localization of the spliceosomal U6 snRNA , 2007, Nucleic acids research.

[70]  E. Wentzel,et al.  A Hexanucleotide Element Directs MicroRNA Nuclear Import , 2007, Science.

[71]  Dipali G. Sashital,et al.  U2–U6 RNA folding reveals a group II intron-like domain and a four-helix junction , 2004, Nature Structural &Molecular Biology.

[72]  T. Tuschl,et al.  Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. , 2004, Molecular cell.

[73]  Hervé Seitz,et al.  Identification of 13 novel human modification guide RNAs. , 2003, Nucleic acids research.

[74]  C. Burge,et al.  The microRNAs of Caenorhabditis elegans. , 2003, Genes & development.

[75]  C. Guthrie,et al.  A conserved Lsm-interaction motif in Prp24 required for efficient U4/U6 di-snRNP formation. , 2002, RNA.

[76]  A. Weiner,et al.  Sequences upstream of the branch site are required to form helix II between U2 and U6 snRNA in a trans-splicing reaction. , 2001, Nucleic acids research.

[77]  C. Branlant,et al.  A limited number of pseudouridine residues in the human atac spliceosomal UsnRNAs as compared to human major spliceosomal UsnRNAs. , 1999, RNA.

[78]  Ram Reddy,et al.  Accurate and efficient N-6-adenosine methylation in spliceosomal U6 small nuclear RNA by HeLa cell extract in vitro , 1995, Nucleic Acids Res..

[79]  J. Steitz,et al.  Isolation of small nuclear ribonucleoproteins containing U1, U2, U4, U5, and U6 RNAs. , 1983, The Journal of biological chemistry.

[80]  Vaishali R. Moulton,et al.  Estrogen-induced hsa-miR-10b-5p is elevated in T cells from patients with systemic lupus erythematosus and downregulates splicing factor SRSF1 , 2021 .

[81]  Z. Medarova,et al.  The fundamental role of miR-10b in metastatic cancer. , 2018, American journal of cancer research.

[82]  J. Beggs,et al.  The Lsm 2-8 complex determines nuclear localization of the spliceosomal U 6 snRNA , 2007 .