Membrane-protein topology

[1]  G. von Heijne,et al.  Asn‐ and Asp‐mediated interactions between transmembrane helices during translocon‐mediated membrane protein assembly , 2006, EMBO reports.

[2]  R. Dawson,et al.  Structure of a bacterial multidrug ABC transporter , 2006, Nature.

[3]  Erik Granseth,et al.  Structural classification and prediction of reentrant regions in alpha-helical transmembrane proteins: application to complete genomes. , 2006, Journal of molecular biology.

[4]  Comparison of three structures of the multidrug transporter EmrE. , 2006, Current opinion in structural biology.

[5]  G. von Heijne,et al.  A global topology map of the Saccharomyces cerevisiae membrane proteome. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Arne Elofsson,et al.  ZPRED: Predicting the distance to the membrane center for residues in alpha-helical membrane proteins , 2006, ISMB.

[7]  William Dowhan,et al.  Phosphatidylethanolamine and Monoglucosyldiacylglycerol Are Interchangeable in Supporting Topogenesis and Function of the Polytopic Membrane Protein Lactose Permease* , 2006, Journal of Biological Chemistry.

[8]  S. High,et al.  Active and passive displacement of transmembrane domains both occur during opsin biogenesis at the Sec61 translocon , 2006, Journal of Cell Science.

[9]  J. Bowie Flip-flopping membrane proteins , 2006, Nature Structural &Molecular Biology.

[10]  A. Driessen,et al.  Topologically Fixed SecG Is Fully Functional , 2006, Journal of bacteriology.

[11]  Gunnar von Heijne,et al.  Identification and evolution of dual-topology membrane proteins , 2006, Nature Structural &Molecular Biology.

[12]  Geoffrey Chang,et al.  X-ray Structure of the EmrE Multidrug Transporter in Complex with a Substrate , 2005, Science.

[13]  Florence Tama,et al.  Structure of the E. coli protein-conducting channel bound to a translating ribosome , 2005, Nature.

[14]  Roderick MacKinnon,et al.  Calibrated Measurement of Gating-Charge Arginine Displacement in the KvAP Voltage-Dependent K+ Channel , 2005, Cell.

[15]  W. Skach,et al.  Sequential triage of transmembrane segments by Sec61α during biogenesis of a native multispanning membrane protein , 2005, Nature Structural &Molecular Biology.

[16]  Johan Nilsson,et al.  Comparative analysis of amino acid distributions in integral membrane proteins from 107 genomes , 2005, Proteins.

[17]  W. Dowhan,et al.  Phospholipids as Determinants of Membrane Protein Topology , 2005, Journal of Biological Chemistry.

[18]  Andreas Bernsel,et al.  Improved membrane protein topology prediction by domain assignments , 2005, Protein science : a publication of the Protein Society.

[19]  G. von Heijne,et al.  Materials and Methods Figs. S1 to S3 References and Notes Global Topology Analysis of the Escherichia Coli Inner Membrane Proteome , 2022 .

[20]  Martin B Ulmschneider,et al.  Properties of integral membrane protein structures: Derivation of an implicit membrane potential , 2005, Proteins.

[21]  A. Aguzzi,et al.  Human prion diseases: molecular and clinical aspects. , 2005, Archives of neurology.

[22]  Gunnar von Heijne,et al.  Membrane Insertion of a Potassium-Channel Voltage Sensor , 2005, Science.

[23]  G. Heijne,et al.  Recognition of transmembrane helices by the endoplasmic reticulum translocon , 2005, Nature.

[24]  Wei Zhang,et al.  Phospholipids as Determinants of Membrane Protein Topology PHOSPHATIDYLETHANOLAMINE IS REQUIRED FOR THE PROPER TOPOLOGICAL ORGANIZATION OF THE (cid:1) -AMINOBUTYRIC ACID PERMEASE (GabP) OF ESCHERICHIA COLI * , 2005 .

[25]  P. Nissen,et al.  Dephosphorylation of the Calcium Pump Coupled to Counterion Occlusion , 2004, Science.

[26]  W. Skach,et al.  Biogenesis of CFTR and other Polytopic Membrane Proteins: New Rolesfor the Ribosome-Translocon Complex , 2004, The Journal of Membrane Biology.

[27]  Hiromi Nomura,et al.  Lumenal gating mechanism revealed in calcium pump crystal structures with phosphate analogues , 2004, Nature.

[28]  T. Rapoport,et al.  Membrane-protein integration and the role of the translocation channel. , 2004, Trends in cell biology.

[29]  T. Junne,et al.  Topogenesis of membrane proteins at the endoplasmic reticulum. , 2004, Biochemistry.

[30]  V. Lingappa,et al.  Signal sequences influence membrane integration of the prion protein. , 2004, Biochemistry.

[31]  C. Tate,et al.  The Escherichia coli multidrug transporter EmrE is a dimer in the detergent-solubilised state. , 2004, Journal of molecular biology.

[32]  N. Pfanner,et al.  Mitochondrial import and the twin-pore translocase , 2004, Nature Reviews Molecular Cell Biology.

[33]  S. White The progress of membrane protein structure determination , 2004, Protein science : a publication of the Protein Society.

[34]  Poul Nissen,et al.  Phosphoryl Transfer and Calcium Ion Occlusion in the Calcium Pump , 2004, Science.

[35]  Arthur E Johnson,et al.  Cotranslational Membrane Protein Biogenesis at the Endoplasmic Reticulum* , 2004, Journal of Biological Chemistry.

[36]  Masafumi Arai,et al.  Internal gene duplication in the evolution of prokaryotic transmembrane proteins. , 2004, Journal of molecular biology.

[37]  Sylvia Mann,et al.  Assessment of determinants affecting the dual topology of hepadnaviral large envelope proteins. , 2004, The Journal of general virology.

[38]  H. Luecke,et al.  Atomic resolution structures and the mechanism of ion pumping in bacteriorhodopsin. , 2004, Frontiers in bioscience : a journal and virtual library.

[39]  S. Schuldiner,et al.  The membrane topology of EmrE – a small multidrug transporter from Escherichia coli , 2004, FEBS letters.

[40]  M. Gerstein,et al.  Transmembrane protein domains rarely use covalent domain recombination as an evolutionary mechanism. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Duan Yang,et al.  The evolution of transmembrane helix kinks and the structural diversity of G protein-coupled receptors. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Martin Spiess,et al.  Sec61p contributes to signal sequence orientation according to the positive-inside rule. , 2003, Molecular biology of the cell.

[43]  Bert van den Berg,et al.  X-ray structure of a protein-conducting channel , 2004, Nature.

[44]  M. Bogdanov,et al.  Reversible Topological Organization within a Polytopic Membrane Protein Is Governed by a Change in Membrane Phospholipid Composition* , 2003, Journal of Biological Chemistry.

[45]  Christopher G Tate,et al.  Three‐dimensional structure of the bacterial multidrug transporter EmrE shows it is an asymmetric homodimer , 2003, The EMBO journal.

[46]  S. Iwata,et al.  Structure and Mechanism of the Lactose Permease of Escherichia coli , 2003, Science.

[47]  Da-Neng Wang,et al.  Structure and Mechanism of the Glycerol-3-Phosphate Transporter from Escherichia coli , 2003, Science.

[48]  H. Schiöth,et al.  The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. , 2003, Molecular pharmacology.

[49]  R. Prange,et al.  Chaperone action in the posttranslational topological reorientation of the hepatitis B virus large envelope protein: Implications for translocational regulation , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[50]  Roderick MacKinnon,et al.  Gating the Selectivity Filter in ClC Chloride Channels , 2003, Science.

[51]  T. Rapoport,et al.  Structure of the mammalian ribosome-channel complex at 17A resolution. , 2002, Journal of molecular biology.

[52]  Xiaoyuan Wang,et al.  Topology of polytopic membrane protein subdomains is dictated by membrane phospholipid composition , 2002, The EMBO journal.

[53]  K. Nishiyama,et al.  Membrane topology inversion of SecG detected by labeling with a membrane-impermeable sulfhydryl reagent that causes a close association of SecG with SecA. , 2002, Journal of biochemistry.

[54]  Hiromi Nomura,et al.  Structural changes in the calcium pump accompanying the dissociation of calcium , 2002, Nature.

[55]  F. Penin,et al.  Topological changes in the transmembrane domains of hepatitis C virus envelope glycoproteins , 2002, The EMBO journal.

[56]  M. Bogdanov,et al.  A polytopic membrane protein displays a reversible topology dependent on membrane lipid composition , 2002, The EMBO journal.

[57]  R. Dutzler,et al.  X-ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity , 2002, Nature.

[58]  A. Yamaguchi,et al.  Analysis of a Complete Library of Putative Drug Transporter Genes in Escherichia coli , 2001, Journal of bacteriology.

[59]  R. Hegde,et al.  Combinatorial Control of Prion Protein Biogenesis by the Signal Sequence and Transmembrane Domain* , 2001, The Journal of Biological Chemistry.

[60]  R. Prange,et al.  Dual Topology of the Hepatitis B Virus Large Envelope Protein , 2001, The Journal of Biological Chemistry.

[61]  B. Dobberstein,et al.  Prion Protein Contains a Second Endoplasmic Reticulum Targeting Signal Sequence Located at Its C Terminus* , 2001, The Journal of Biological Chemistry.

[62]  J. de Gier,et al.  Biogenesis of inner membrane proteins in Escherichia coli , 2001, Molecular microbiology.

[63]  A. Krogh,et al.  Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. , 2001, Journal of molecular biology.

[64]  Andreas Engel,et al.  Structural determinants of water permeation through aquaporin-1 , 2000, Nature.

[65]  A. Verkman,et al.  Reorientation of aquaporin-1 topology during maturation in the endoplasmic reticulum. , 2000, Molecular biology of the cell.

[66]  T. Rapoport,et al.  The Sec61p Complex Mediates the Integration of a Membrane Protein by Allowing Lipid Partitioning of the Transmembrane Domain , 2000, Cell.

[67]  Eric Gouaux,et al.  Functional characterization of a potassium-selective prokaryotic glutamate receptor , 1999, Nature.

[68]  V. Goder,et al.  Glycosylation Can Influence Topogenesis of Membrane Proteins and Reveals Dynamic Reorientation of Nascent Polypeptides within the Translocon , 1999, The Journal of cell biology.

[69]  U. Bläsi,et al.  Molecular function of the dual‐start motif in the λ S holin , 1999, Molecular microbiology.

[70]  G. von Heijne Recent advances in the understanding of membrane protein assembly and structure. , 1999, Quarterly reviews of biophysics.

[71]  S. White,et al.  Membrane protein folding and stability: physical principles. , 1999, Annual review of biophysics and biomolecular structure.

[72]  G von Heijne,et al.  Forced transmembrane orientation of hydrophilic polypeptide segments in multispanning membrane proteins. , 1998, Molecular cell.

[73]  Dieter Langosch,et al.  Interaction of transmembrane helices by a knobs‐into‐holes packing characteristic of soluble coiled coils , 1998, Proteins.

[74]  S. Prusiner,et al.  A transmembrane form of the prion protein in neurodegenerative disease. , 1998, Science.

[75]  J U Bowie,et al.  Helix packing in membrane proteins. , 1997, Journal of molecular biology.

[76]  G von Heijne,et al.  Anionic phospholipids are determinants of membrane protein topology , 1997, The EMBO journal.

[77]  R Henderson,et al.  Electron-crystallographic refinement of the structure of bacteriorhodopsin. , 1996, Journal of molecular biology.

[78]  Takashi Suzuki,et al.  Inversion of the Membrane Topology of SecG Coupled with SecA-Dependent Preprotein Translocation , 1996, Cell.

[79]  M. Spiess,et al.  Transmembrane orientation of signal‐anchor proteins is affected by the folding state but not the size of the N‐terminal domain. , 1995, The EMBO journal.

[80]  M. Finbow,et al.  Membrane insertion and assembly of ductin: a polytopic channel with dual orientations. , 1995, The EMBO journal.

[81]  Gunnar von Heijne,et al.  Topological “frustration” in multispanning E. coli inner membrane proteins , 1994, Cell.

[82]  Heijne,et al.  Membrane protein topology: effects of delta mu H+ on the translocation of charged residues explain the ‘positive inside’ rule. , 1994, The EMBO journal.

[83]  Gunnar von Heijne,et al.  Fine-tuning the topology of a polytopic membrane protein: Role of positively and negatively charged amino acids , 1990, Cell.

[84]  G. Vonheijne,et al.  Control of topology and mode of assembly of a polytopic membrane protein by positively charged residues , 1989, Nature.

[85]  John C. Wyngaard,et al.  Structure of the PBL , 1988 .

[86]  G. Heijne The distribution of positively charged residues in bacterial inner membrane proteins correlates with the trans‐membrane topology , 1986, The EMBO journal.