Natural variation among Arabidopsis thaliana accessions in tolerance to high magnesium supply

[1]  Longbiao Guo,et al.  Sensing of Abiotic Stress and Ionic Stress Responses in Plants , 2018, International journal of molecular sciences.

[2]  T. Le Bihan,et al.  Nucleoredoxin guards against oxidative stress by protecting antioxidant enzymes , 2017, Proceedings of the National Academy of Sciences.

[3]  Mark G. M. Aarts,et al.  Phenomics for photosynthesis, growth and reflectance in Arabidopsis thaliana reveals circadian and long-term fluctuations in heritability , 2016, Plant Methods.

[4]  Dirk Inzé,et al.  Measurement of plant growth in view of an integrative analysis of regulatory networks. , 2015, Current opinion in plant biology.

[5]  Yong-song Zhang,et al.  Phosphorus and magnesium interactively modulate the elongation and directional growth of primary roots in Arabidopsis thaliana (L.) Heynh , 2015, Journal of experimental botany.

[6]  N. Hussain,et al.  Magnesium stress signaling in plant: Just a beginning , 2015, Plant signaling & behavior.

[7]  S. Luan,et al.  Tonoplast CBL–CIPK calcium signaling network regulates magnesium homeostasis in Arabidopsis , 2015, Proceedings of the National Academy of Sciences.

[8]  Yong-song Zhang,et al.  Magnesium availability regulates the development of root hairs in Arabidopsis thaliana (L.) Heynh. , 2014, Plant, cell & environment.

[9]  N. Hussain,et al.  The remodeling of seedling development in response to long-term magnesium toxicity and regulation by ABA-DELLA signaling in Arabidopsis. , 2014, Plant & cell physiology.

[10]  J. Reichheld,et al.  NTR/NRX define a new thioredoxin system in the nucleus of Arabidopsis thaliana cells. , 2013, Molecular plant.

[11]  Santosh B. Satbhai,et al.  Genome-wide association study using cellular traits identifies a new regulator of root development in Arabidopsis , 2013, Nature Genetics.

[12]  J. Kangasjärvi,et al.  ROS signaling loops - production, perception, regulation. , 2013, Current opinion in plant biology.

[13]  D. Roby,et al.  An Atypical Kinase under Balancing Selection Confers Broad-Spectrum Disease Resistance in Arabidopsis , 2013, PLoS genetics.

[14]  A. Korte,et al.  The advantages and limitations of trait analysis with GWAS: a review , 2013, Plant Methods.

[15]  Swetlana Friedel,et al.  Plasticity of the Arabidopsis Root System under Nutrient Deficiencies1[C][W][OPEN] , 2013, Plant Physiology.

[16]  O. Loudet,et al.  Phenoscope: an automated large-scale phenotyping platform offering high spatial homogeneity. , 2013, The Plant journal : for cell and molecular biology.

[17]  Xue-Yong Huang,et al.  AUXIN RESPONSE FACTOR17 Is Essential for Pollen Wall Pattern Formation in Arabidopsis1[C][W][OA] , 2013, Plant Physiology.

[18]  S. Masiero,et al.  Expression-based and co-localization detection of arabinogalactan protein 6 and arabinogalactan protein 11 interactors in Arabidopsis pollen and pollen tubes , 2013, BMC Plant Biology.

[19]  Bjarni J. Vilhjálmsson,et al.  GWAPP: A Web Application for Genome-Wide Association Mapping in Arabidopsis[W][OA] , 2012, Plant Cell.

[20]  S. Luan,et al.  Tonoplast calcium sensors CBL2 and CBL3 control plant growth and ion homeostasis through regulating V-ATPase activity in Arabidopsis , 2012, Cell Research.

[21]  Da-Peng Zhang,et al.  Roles of the different components of magnesium chelatase in abscisic acid signal transduction , 2012, Plant Molecular Biology.

[22]  A. Auton,et al.  Genome-wide patterns of genetic variation in worldwide Arabidopsis thaliana accessions from the RegMap panel , 2011, Nature Genetics.

[23]  Erin T. Hamanishi,et al.  Comprehending crystalline β-carotene accumulation by comparing engineered cell models and the natural carotenoid-rich system of citrus , 2011, Journal of experimental botany.

[24]  J. Schjoerring,et al.  Functions of macronutrients , 2012 .

[25]  S. Tabata,et al.  The integral membrane protein SEN1 is required for symbiotic nitrogen fixation in Lotus japonicus nodules. , 2012, Plant & cell physiology.

[26]  M. Melzer,et al.  An Arabidopsis GluTR Binding Protein Mediates Spatial Separation of 5-Aminolevulinic Acid Synthesis in Chloroplasts[W] , 2011, Plant Cell.

[27]  David L. Hyten,et al.  Genome‐Wide Association Analysis Identifies Candidate Genes Associated with Iron Deficiency Chlorosis in Soybean , 2011 .

[28]  M. Rossignol,et al.  Proteomic analysis of Arabidopsis thaliana ecotypes with contrasted root architecture in response to phosphate deficiency. , 2011, Journal of plant physiology.

[29]  H. Marschner,et al.  Marschner's Mineral Nutrition of Higher Plants , 2011 .

[30]  Yong-song Zhang,et al.  Auxin modulates the enhanced development of root hairs in Arabidopsis thaliana (L.) Heynh. under elevated CO(2). , 2011, Plant, cell & environment.

[31]  R. Leigh,et al.  Calcium delivery and storage in plant leaves: exploring the link with water flow. , 2011, Journal of experimental botany.

[32]  R. Ferl,et al.  Growth Performance and Root Transcriptome Remodeling of Arabidopsis in Response to Mars-Like Levels of Magnesium Sulfate , 2010, PloS one.

[33]  Matthew Gilliham,et al.  Calcium storage in plants and the implications for calcium biofortification , 2010, Protoplasma.

[34]  Tina T. Hu,et al.  Population resequencing reveals local adaptation of Arabidopsis lyrata to serpentine soils , 2010, Nature Genetics.

[35]  Muhammad Ali Amer,et al.  Genome-wide association study of 107 phenotypes in a common set of Arabidopsis thaliana inbred lines , 2010, Nature.

[36]  K. Shinozaki,et al.  MCA1 and MCA2 That Mediate Ca2+ Uptake Have Distinct and Overlapping Roles in Arabidopsis1[W][OA] , 2010, Plant Physiology.

[37]  Julian Weghuber,et al.  A Root-Expressed Magnesium Transporter of the MRS2/MGT Gene Family in Arabidopsis thaliana Allows for Growth in Low-Mg2+ Environments[W] , 2009, The Plant Cell Online.

[38]  W. Frommer,et al.  Feedback Inhibition of Ammonium Uptake by a Phospho-Dependent Allosteric Mechanism in Arabidopsis[W] , 2009, The Plant Cell Online.

[39]  J. Dangl,et al.  The Plant NADPH Oxidase RBOHD Mediates Rapid Systemic Signaling in Response to Diverse Stimuli , 2009, Science Signaling.

[40]  Yuan Qin,et al.  Penetration of the Stigma and Style Elicits a Novel Transcriptome in Pollen Tubes, Pointing to Genes Critical for Growth in a Pistil , 2009, PLoS genetics.

[41]  E. L. Connolly,et al.  Iron uptake mechanisms in plants: Functions of the FRO family of ferric reductases , 2009 .

[42]  S. Luan The CBL-CIPK network in plant calcium signaling. , 2009, Trends in plant science.

[43]  N. Sakurai,et al.  Comparative transcriptomic characterization of aluminum, sodium chloride, cadmium and copper rhizotoxicities in Arabidopsis thaliana , 2009, BMC Plant Biology.

[44]  Yong Hwa Cheong,et al.  Two calcineurin B-like calcium sensors, interacting with protein kinase CIPK23, regulate leaf transpiration and root potassium uptake in Arabidopsis. , 2007, The Plant journal : for cell and molecular biology.

[45]  J. Ohlrogge,et al.  Sampling the Arabidopsis Transcriptome with Massively Parallel Pyrosequencing1[W][OA] , 2007, Plant Physiology.

[46]  P. Broun,et al.  GLABROUS INFLORESCENCE STEMS Modulates the Regulation by Gibberellins of Epidermal Differentiation and Shoot Maturation in Arabidopsis[W] , 2006, The Plant Cell Online.

[47]  William H. Farrand,et al.  Geochemical and mineralogical indicators for aqueous processes in the Columbia Hills of Gusev crater, Mars , 2006 .

[48]  H. D. Bradshaw,et al.  Evolutionary Ecology of Plant Adaptation to Serpentine Soils , 2005 .

[49]  D. Ming,et al.  Water alteration of rocks and soils on Mars at the Spirit rover site in Gusev crater , 2005, Nature.

[50]  H. Bradshaw Mutations in CAX1 produce phenotypes characteristic of plants tolerant to serpentine soils. , 2005, The New phytologist.

[51]  M. D. Smith,et al.  Mineralogy at Meridiani Planum from the Mini-TES Experiment on the Opportunity Rover , 2004, Science.

[52]  M. Macnair,et al.  QTL mapping for a trade-off between leaf and bud production in a recombinant inbred population of Microseris douglasii and M. bigelovii (Asteraceae, Lactuceae): a potential preadaptation for the colonization of serpentine soils. , 2004, Plant biology.

[53]  F. Baluška,et al.  New signalling molecules regulating root hair tip growth. , 2004, Trends in plant science.

[54]  M. Maguire,et al.  Magnesium chemistry and biochemistry , 2002, Biometals.

[55]  A. Kipper A symposium , 2004, Plant Cell, Tissue and Organ Culture.

[56]  A. Berglund,et al.  Evidence for parallel evolution and site‐specific selection of serpentine tolerance in Cerastium alpinum during the colonization of Scandinavia , 2003 .

[57]  T. Givnish,et al.  Geographic cohesion, chromosomal evolution, parallel adaptive radiations, and consequent floral adaptations in Calochortus (Calochortaceae): evidence from a cpDNA phylogeny , 2003 .

[58]  M. Rossignol,et al.  Effects of phosphate availability on the root system architecture: large‐scale analysis of the natural variation between Arabidopsis accessions , 2003 .

[59]  N. Grotz,et al.  Overexpression of the FRO2 Ferric Chelate Reductase Confers Tolerance to Growth on Low Iron and Uncovers Posttranscriptional Control1 , 2003, Plant Physiology.

[60]  Jonathan D. G. Jones,et al.  Reactive oxygen species produced by NADPH oxidase regulate plant cell growth , 2003, Nature.

[61]  R. Gabbrielli,et al.  Chloroplast genetic diversity and biogeography in the serpentine endemic Ni-hyperaccumulator Alyssum bertolonii. , 2003, The New phytologist.

[62]  N. Rajakaruna,et al.  Differential responses to Na+ /K+ and Ca2+ /Mg2+ in two edaphic races of the Lasthenia californica (Asteraceae) complex: A case for parallel evolution of physiological traits. , 2003, The New phytologist.

[63]  D. Eide,et al.  Characterization of FRO1, a Pea Ferric-Chelate Reductase Involved in Root Iron Acquisition1 , 2002, Plant Physiology.

[64]  T. Fujiwara,et al.  Selenate-resistant mutants of Arabidopsis thaliana identify Sultr1;2, a sulfate transporter required for efficient transport of sulfate into roots. , 2002, The Plant journal : for cell and molecular biology.

[65]  Matthias H. Hoffmann,et al.  Biogeography of Arabidopsis thaliana (L.) Heynh. (Brassicaceae) , 2002 .

[66]  Dorn,et al.  PLASTICITY TO LIGHT CUES AND RESOURCES IN ARABIDOPSIS THALIANA : TESTING FOR ADAPTIVE VALUE AND COSTS , 2001 .

[67]  J. Schmitt,et al.  PLASTICITY TO LIGHT CUES AND RESOURCES IN ARABIDOPSIS THALIANA: TESTING FOR ADAPTIVE VALUE AND COSTS , 2000, Evolution; international journal of organic evolution.

[68]  J. C. Hull,et al.  Vegetation, Flora, and Plant Physiological Ecology of Serpentine Barrens of Eastern North America , 1999 .

[69]  C. Schlichting,et al.  Reaction norms of Arabidopsis. I. Plasticity of characters and correlations across water, nutrient and light gradients , 1995 .

[70]  J. Marshall,et al.  POPULATION DYNAMICS OF ARABIDOPSIS THALIANA (L.) HEYNH. STRAIN ‘ESTLAND’ AT DIFFERENT DENSITIES AND NUTRIENT LEVELS , 1973 .