Functional Reconstitution of HlyB, a Type I Secretion ABC Transporter, in Saposin-A Nanoparticles

[1]  D. Svergun,et al.  Saposin Lipid Nanoparticles: A Highly Versatile and Modular Tool for Membrane Protein Research , 2018, Structure.

[2]  D. Nietlispach,et al.  An Adaptable Phospholipid Membrane Mimetic System for Solution NMR Studies of Membrane Proteins. , 2017, Journal of the American Chemical Society.

[3]  S. Sligar,et al.  Nanodiscs in Membrane Biochemistry and Biophysics. , 2017, Chemical reviews.

[4]  M. Picard,et al.  Quantification of Detergents Complexed with Membrane Proteins , 2017, Scientific Reports.

[5]  J. Lyons,et al.  Saposin-Lipoprotein Scaffolds for Structure Determination of Membrane Transporters. , 2017, Methods in enzymology.

[6]  L. Schmitt,et al.  Type I Protein Secretion-Deceptively Simple yet with a Wide Range of Mechanistic Variability across the Family. , 2016, EcoSal Plus.

[7]  S. Smits,et al.  In vivo quantification of the secretion rates of the hemolysin A Type I secretion system , 2016, Scientific Reports.

[8]  K. Stühler,et al.  Interdomain regulation of the ATPase activity of the ABC transporter haemolysin B from Escherichia coli. , 2016, The Biochemical journal.

[9]  S. Sligar,et al.  Nanodiscs for structural and functional studies of membrane proteins , 2016, Nature Structural &Molecular Biology.

[10]  John A.G. Briggs,et al.  A novel lipoprotein nanoparticle system for membrane proteins , 2016, Nature Methods.

[11]  Terry K. Smith,et al.  The role of lipids in mechanosensation , 2015, Nature Structural &Molecular Biology.

[12]  S. Weidtkamp‐Peters,et al.  Directionality of substrate translocation of the hemolysin A Type I secretion system , 2015, Scientific Reports.

[13]  Gabriel Waksman,et al.  Secretion systems in Gram-negative bacteria: structural and mechanistic insights , 2015, Nature Reviews Microbiology.

[14]  Seok-Yong Lee,et al.  Liposome reconstitution and transport assay for recombinant transporters. , 2015, Methods in enzymology.

[15]  S. Smits,et al.  A simple in vitro acylation assay based on optimized HlyA and HlyC purification. , 2014, Analytical biochemistry.

[16]  C. Chipot,et al.  Dangerous liaisons between detergents and membrane proteins. The case of mitochondrial uncoupling protein 2. , 2013, Journal of the American Chemical Society.

[17]  A. Watts,et al.  Helical membrane protein conformations and their environment , 2013, European Biophysics Journal.

[18]  C. Schwarz,et al.  Type I secretion systems - a story of appendices. , 2013, Research in microbiology.

[19]  Huan‐Xiang Zhou,et al.  Influences of membrane mimetic environments on membrane protein structures. , 2013, Annual review of biophysics.

[20]  C. Schwarz,et al.  An RTX transporter tethers its unfolded substrate during secretion via a unique N-terminal domain. , 2012, Structure.

[21]  J. Pérez-Gil,et al.  Structure–function correlations of pulmonary surfactant protein SP-B and the saposin-like family of proteins , 2012, European Biophysics Journal.

[22]  Huan Bao,et al.  Discovery of an Auto-Regulation Mechanism for the Maltose ABC Transporter MalFGK2 , 2012, PloS one.

[23]  R. Pomès,et al.  Structure of saposin A lipoprotein discs , 2012, Proceedings of the National Academy of Sciences.

[24]  I. Linhartova,et al.  RTX proteins: a highly diverse family secreted by a common mechanism , 2010, FEMS microbiology reviews.

[25]  S. Smits,et al.  The Rate of Folding Dictates Substrate Secretion by the Escherichia coli Hemolysin Type 1 Secretion System* , 2010, The Journal of Biological Chemistry.

[26]  R. Grisshammer,et al.  Stability of the Neurotensin Receptor NTS1 Free in Detergent Solution and Immobilized to Affinity Resin , 2010, PloS one.

[27]  T. Andresen,et al.  Understanding detergent effects on lipid membranes: a model study of lysolipids. , 2010, Biophysical journal.

[28]  Anna M. Lieb,et al.  The biological significance of substrate inhibition: A mechanism with diverse functions , 2010, BioEssays : news and reviews in molecular, cellular and developmental biology.

[29]  F. Sharom,et al.  The reconstituted Escherichia coli MsbA protein displays lipid flippase activity , 2010, The Biochemical journal.

[30]  A. Okamoto,et al.  Crystal Structure of the Peptidase Domain of Streptococcus ComA, a Bifunctional ATP-binding Cassette Transporter Involved in the Quorum-sensing Pathway* , 2010, The Journal of Biological Chemistry.

[31]  Q. Cui,et al.  Curvature generation and pressure profile modulation in membrane by lysolipids: insights from coarse-grained simulations. , 2009, Biophysical journal.

[32]  A. Rath,et al.  Detergent binding explains anomalous SDS-PAGE migration of membrane proteins , 2009, Proceedings of the National Academy of Sciences.

[33]  S. Sligar,et al.  Chapter 11 - Reconstitution of membrane proteins in phospholipid bilayer nanodiscs. , 2009, Methods in enzymology.

[34]  Klaus Schulten,et al.  Assembly of lipids and proteins into lipoprotein particles. , 2007, The journal of physical chemistry. B.

[35]  Lutz Schmitt,et al.  A structural analysis of asymmetry required for catalytic activity of an ABC‐ATPase domain dimer , 2006, The EMBO journal.

[36]  A. di Pietro,et al.  The ABC transporter BmrA from Bacillus subtilis is a functional dimer when in a detergent-solubilized state. , 2006, The Biochemical journal.

[37]  L. Schmitt,et al.  Molecular insights into the mechanism of ATP‐hydrolysis by the NBD of the ABC‐transporter HlyB , 2006, FEBS letters.

[38]  N. Mackman,et al.  The carboxy-terminal region of haemolysin 2001 is required for secretion of the toxin fromEscherichia coli , 1986, Molecular and General Genetics MGG.

[39]  H. Bruhn A short guided tour through functional and structural features of saposin-like proteins. , 2005, The Biochemical journal.

[40]  L. Schmitt,et al.  Functional characterization and ATP-induced dimerization of the isolated ABC-domain of the haemolysin B transporter. , 2005, Biochemistry.

[41]  Lutz Schmitt,et al.  H662 is the linchpin of ATP hydrolysis in the nucleotide‐binding domain of the ABC transporter HlyB , 2005, The EMBO journal.

[42]  Paul Curnow,et al.  Membrane proteins, lipids and detergents: not just a soap opera. , 2004, Biochimica et biophysica acta.

[43]  K. Stiasny,et al.  Effect of Membrane Curvature-Modifying Lipids on Membrane Fusion by Tick-Borne Encephalitis Virus , 2004, Journal of Virology.

[44]  F. Denizot,et al.  Characterization of YvcC (BmrA), a multidrug ABC transporter constitutively expressed in Bacillus subtilis. , 2004, Biochemistry.

[45]  S. Sligar,et al.  Directed self-assembly of monodisperse phospholipid bilayer Nanodiscs with controlled size. , 2004, Journal of the American Chemical Society.

[46]  W. Goebel,et al.  Plasmid cistrons controlling synthesis and excretion of the exotoxin α-haemolysin of Escherichia coli , 1979, Molecular and General Genetics MGG.

[47]  A. di Pietro,et al.  The Conserved Glutamate Residue Adjacent to the Walker-B Motif Is the Catalytic Base for ATP Hydrolysis in the ATP-binding Cassette Transporter BmrA* , 2003, Journal of Biological Chemistry.

[48]  Carsten Horn,et al.  A specific interaction between the NBD of the ABC-transporter HlyB and a C-terminal fragment of its transport substrate haemolysin A. , 2003, Journal of molecular biology.

[49]  L. Balakrishnan,et al.  Substrate-triggered recruitment of the TolC channel-tunnel during type I export of hemolysin by Escherichia coli. , 2001, Journal of molecular biology.

[50]  R. Rand,et al.  The influence of lysolipids on the spontaneous curvature and bending elasticity of phospholipid membranes. , 2001, Biophysical journal.

[51]  B. Wanner,et al.  One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[52]  S. Safran,et al.  Effect of lipid characteristics on the structure of transmembrane proteins. , 1998, Biophysical journal.

[53]  C. Higgins,et al.  The functional purification of P-glycoprotein is dependent on maintenance of a lipid-protein interface. , 1997, Biochimica et biophysica acta.

[54]  G. Lindblom,et al.  Wild-type Escherichia coli Cells Regulate the Membrane Lipid Composition in a Window between Gel and Non-lamellar Structures (*) , 1996, The Journal of Biological Chemistry.

[55]  D. Diep,et al.  A family of bacteriocin ABC transporters carry out proteolytic processing of their substrates concomitant with export , 1995, Molecular microbiology.

[56]  Steven S. Vogel,et al.  Lysolipids reversibly inhibit Ca2+‐, GTP‐ and pH‐dependent fusion of biological membranes , 1993, FEBS letters.

[57]  R. Welch Pore‐forming cytolysins of Gram‐negative bacteria , 1991, Molecular microbiology.

[58]  P. Delepelaire,et al.  TolC, an Escherichia coli outer membrane protein required for hemolysin secretion. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[59]  V. Koronakis,et al.  Isolation and analysis of the C‐terminal signal directing export of Escherichia coli hemolysin protein across both bacterial membranes. , 1989, The EMBO journal.

[60]  N. Mackman,et al.  A novel C-terminal signal sequence targets Escherichia coli haemolysin directly to the medium , 1989, Journal of Cell Science.

[61]  A. Baykov,et al.  A malachite green procedure for orthophosphate determination and its use in alkaline phosphatase-based enzyme immunoassay. , 1988, Analytical biochemistry.

[62]  R. Welch,et al.  Nucleotide sequence of an Escherichia coli chromosomal hemolysin , 1985, Journal of bacteriology.