Multiplicity of solutions for p ( x ) -polyharmonic elliptic Kirchhoff equations

Abstract In this paper we establish the existence of an unbounded sequence of solutions for a class of quasilinear elliptic p ( x ) -polyharmonic Kirchhoff equations, including the new delicate degenerate case, not yet covered in the literature. The main tool is the symmetric mountain pass theorem of Ambrosetti and Rabinowitz.

[1]  Guowei Dai,et al.  Infinitely many non-negative solutions for a p(x)-Kirchhoff-type problem with Dirichlet boundary condition , 2010 .

[2]  Dongming Wei,et al.  DECAY ESTIMATES OF HEAT TRANSFER TO MELTON POLYMER FLOW IN PIPES WITH VISCOUS DISSIPATION , 2001 .

[3]  Takao Ohno,et al.  COMPACT EMBEDDINGS FOR SOBOLEV SPACES OF VARIABLE EXPONENTS AND EXISTENCE OF SOLUTIONS FOR NONLINEAR ELLIPTIC PROBLEMS INVOLVING THE p(x)-LAPLACIAN AND ITS CRITICAL EXPONENT , 2010 .

[4]  Piero Villaggio,et al.  Mathematical Models for Elastic Structures , 1997 .

[5]  Vicentiu D. Rădulescu,et al.  Multiplicity of solutions for a class of anisotropic elliptic equations with variable exponent , 2011 .

[6]  Wenming Zou,et al.  Variant fountain theorems and their applications , 2001 .

[7]  Jiří Rákosník,et al.  Sobolev embeddings with variable exponent , 2000 .

[8]  To Fu Ma,et al.  Positive solutions for a nonlinear Kirchhoff type beam equation , 2005, Appl. Math. Lett..

[9]  Peter Hästö,et al.  The Dirichlet Energy Integral and Variable Exponent Sobolev Spaces with Zero Boundary Values , 2006 .

[10]  A. Touzani,et al.  On the spectrum of the p-biharmonic operator , 2002 .

[11]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[12]  G. Kirchhoff,et al.  Vorlesungen über mathematische Physik : Mechanik , 1969 .

[13]  V. Lubyshev Multiple solutions of an even-order nonlinear problem with convexconcave nonlinearity , 2011 .

[14]  G. Kirchhoff Vorlesungen über mathematische physik , 1877 .

[15]  To Fu Ma,et al.  Positive solutions for a quasilinear elliptic equation of Kirchhoff type , 2005 .

[16]  Lars Diening,et al.  Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces Lp(·) and Wk,p(·) , 2004 .

[17]  G. Kirchhoff,et al.  Vorlesungen über Mechanik , 1897 .

[18]  Filippo Gazzola,et al.  Polyharmonic Boundary Value Problems: Positivity Preserving and Nonlinear Higher Order Elliptic Equations in Bounded Domains , 2010 .

[19]  Xianling Fan,et al.  On the Spaces Lp(x)(Ω) and Wm, p(x)(Ω) , 2001 .

[20]  Qihu Zhang,et al.  Existence of solutions for p(x) -Laplacian dirichlet problem , 2003 .

[21]  F. Cammaroto,et al.  Multiple solutions for a Kirchhoff-type problem involving the p ( x ) -Laplacian operator , 2011 .

[22]  T. Ma Positive solutions for a nonlocal fourth order equation of Kirchhoff type , 2007 .

[23]  F. Gazzola,et al.  Polyharmonic Boundary Value Problems , 2010 .

[24]  Emmanuel Hebey,et al.  On some nonlinear equations involving the $p$-Laplacian with critical Sobolev growth , 1998, Advances in Differential Equations.

[25]  P. Drábek,et al.  Global Bifurcation Result for the p-biharmonic Operator , 2001 .

[26]  Youssef Jabri Mountain Pass Theorem , 2022, Lectures in Nonlinear Functional Analysis.

[27]  To Fu Ma,et al.  Remarks on an elliptic equation of Kirchhoff type , 2005 .

[28]  P. Pucci,et al.  Asymptotic stability for nonlinear Kirchhoff systems , 2009 .

[29]  Guowei Dai,et al.  Existence of solutions for a p(x)-Kirchhoff-type equation , 2009 .

[30]  P. Rabinowitz,et al.  Dual variational methods in critical point theory and applications , 1973 .

[31]  L. Diening,et al.  Calderón-Zygmund operators on generalized Lebesgue spaces $L^{p(\cdot)}$ and problems related to fluid dynamics , 2003 .

[32]  Jiří Rákosník,et al.  On spaces $L^{p(x)}$ and $W^{k, p(x)}$ , 1991 .

[33]  MULTIPLICITY OF NONTRIVIAL SOLUTIONS TO A PROBLEM INVOLVING THE WEIGHTED p-BIHARMONIC OPERATOR M. J. Alves R. B. Assun c~ ao y P. C. Carri~ ao , 2009 .

[34]  Giovany M. Figueiredo,et al.  On an elliptic equation of p-Kirchhoff type via variational methods , 2006, Bulletin of the Australian Mathematical Society.

[35]  S. Antontsev,et al.  Elliptic equations and systems with nonstandard growth conditions: Existence, uniqueness and localization properties of solutions , 2006 .

[36]  P. Hästö,et al.  Lebesgue and Sobolev Spaces with Variable Exponents , 2011 .

[37]  Y. Jabri The Mountain Pass Theorem: Variants, Generalizations and Some Applications , 2003 .