A Method for simulating chiral fermions on the lattice

Abstract I show that a lattice theory of massive interacting fermions in 2 n +1 dimensions may be used to simulate the behavior of massless chiral fermions in 2 n dimensions if the fermion mass has a step function shape in the extra dimension. The massless states arise as zero modes bound to the mass defect, and all doublers can be given large gauge invariant masses. The manner in which the anomalies are realized is transparent: apparent chiral anomalies in the 2 n -dimensional subspace correspond to charge flow into the extra dimension.

[1]  H. Nielsen,et al.  Effective dielectric theory from QCD , 1982 .

[2]  C. Callan,et al.  ANOMALIES AND FERMION ZERO MODES ON STRINGS AND DOMAIN WALLS , 1985 .

[3]  J. Bell,et al.  A PCAC puzzle: pi0-->gammagamma in the sigma-model , 1969 .

[4]  On the decoupling of doubler fermions in the lattice standard model , 1992 .

[5]  Kovács,et al.  Lattice fermions in the Schwinger model. , 1987, Physical review. D, Particles and fields.

[6]  A. Niemi,et al.  Axial-Anomaly-Induced Fermion Fractionization and Effective Gauge-Theory Actions in Odd-Dimensional Space-Times , 1983 .

[7]  I. Singer,et al.  Gravitational anomalies and the family's index theorem , 1984 .

[8]  H. Nielsen,et al.  Absence of neutrinos on a lattice: (I). Proof by homotopy theory , 1981 .

[9]  G. Martinelli,et al.  Chiral Symmetry on the Lattice with Wilson Fermions , 1985 .

[10]  J. Smit,et al.  Fermion interactions in models with strong Wilson-Yukawa couplings , 1992 .

[11]  H. Nielsen,et al.  Absence of neutrinos on a lattice: (II). Intuitive topological proof , 1981 .

[12]  H. Nielsen,et al.  A no-go theorem for regularizing chiral fermions , 1981 .

[13]  P. Ginsparg,et al.  The Structure of Gauge and Gravitational Anomalies , 1985 .

[14]  L. Karsten Lattice fermions in euclidean space-time , 1981 .

[15]  E. Fradkin,et al.  A comment on the Nielsen-Ninomiya theorem☆ , 1986 .

[16]  E. Dagotto,et al.  Anomalous currents, induced charge and bound states on a domain wall of a semiconductor , 1987 .

[17]  P. Frampton,et al.  Consistency Conditions for Kaluza-Klein Anomalies , 1983 .

[18]  L. Karsten,et al.  Lattice Fermions: Species Doubling, Chiral Invariance, and the Triangle Anomaly , 1981 .

[19]  P. Frampton,et al.  Analysis of anomalies in higher space-time dimensions , 1983 .

[20]  Stanley Deser,et al.  Three-dimensional massive gauge theories , 1982 .

[21]  H. Georgi Towards a Grand Unified Theory of Flavor , 1979 .

[22]  P. Frampton,et al.  Explicit Evaluation of Anomalies in Higher Dimensions , 1983 .

[23]  On lattice chiral gauge theories , 1991 .

[24]  L. Susskind,et al.  Light composite fermions , 1980 .

[25]  Symmetry Breaking Through Bell-Jackiw Anomalies , 1976 .

[26]  S. Naculich Axionic strings: Covariant anomalies and bosonization of chiral zero modes , 1988 .

[27]  K. Goeke,et al.  Application of the adiabatic, time-dependent Hartree-Bogolyubov approximation to a solvable model , 1974 .

[28]  L. Maiani,et al.  Neutrinos on the lattice. The regularization of a chiral gauge theory , 1990 .

[29]  A. Zee,et al.  Chiral anomalies, higher dimensions, and differential geometry , 1984 .

[30]  Gerard 't Hooft,et al.  Computation of the quantum effects due to a four-dimensional pseudoparticle , 1976 .

[31]  S. Adler Axial vector vertex in spinor electrodynamics , 1969 .

[32]  T. Banks On lattice definitions of chiral gauge theories and the problem of anomalies , 1991 .

[33]  Chiral Fermions and Anomalies on a Finite Lattice , 1992, hep-lat/9206014.

[34]  F. Wilczek,et al.  Fractional Quantum Numbers on Solitons , 1981 .

[35]  A. Redlich Gauge noninvariance and parity nonconservation of three-dimensional fermions , 1984 .