Variability of chromosome structure in pathogenic fungi--of 'ends and odds'.

[1]  B. Scott,et al.  Histone H3K9 and H3K27 methylation regulates fungal alkaloid biosynthesis in a fungal endophyte–plant symbiosis , 2014, Molecular microbiology.

[2]  M. Freitag,et al.  Epigenetic Control of Effector Gene Expression in the Plant Pathogenic Fungus Leptosphaeria maculans , 2014, PLoS genetics.

[3]  M. Freitag,et al.  The Fusarium graminearum Histone H3 K27 Methyltransferase KMT6 Regulates Development and Expression of Secondary Metabolite Gene Clusters , 2013, PLoS genetics.

[4]  Clay C C Wang,et al.  Prototype of an intertwined secondary-metabolite supercluster , 2013, Proceedings of the National Academy of Sciences.

[5]  Kriston L. McGary,et al.  Physical linkage of metabolic genes in fungi is an adaptation against the accumulation of toxic intermediate compounds , 2013, Proceedings of the National Academy of Sciences.

[6]  U. Güldener,et al.  Deciphering the Cryptic Genome: Genome-wide Analyses of the Rice Pathogen Fusarium fujikuroi Reveal Complex Regulation of Secondary Metabolism and Novel Metabolites , 2013, PLoS pathogens.

[7]  B. McDonald,et al.  Breakage-fusion-bridge Cycles and Large Insertions Contribute to the Rapid Evolution of Accessory Chromosomes in a Fungal Pathogen , 2013, PLoS genetics.

[8]  J. Stajich,et al.  Regional control of histone H3 lysine 27 methylation in Neurospora , 2013, Proceedings of the National Academy of Sciences.

[9]  Elissaveta G. Arnaoudova,et al.  Plant-Symbiotic Fungi as Chemical Engineers: Multi-Genome Analysis of the Clavicipitaceae Reveals Dynamics of Alkaloid Loci , 2013, PLoS genetics.

[10]  Axel A. Brakhage,et al.  Regulation of fungal secondary metabolism , 2012, Nature Reviews Microbiology.

[11]  E. Stukenbrock,et al.  Zymoseptoria ardabiliae and Z. pseudotritici, two progenitor species of the septoria tritici leaf blotch fungus Z. tritici (synonym: Mycosphaerella graminicola) , 2012, Mycologia.

[12]  Jinnan Hu,et al.  Genomic characterization of the conditionally dispensable chromosome in Alternaria arborescens provides evidence for horizontal gene transfer , 2012, BMC Genomics.

[13]  C. Barreau,et al.  Regulation of trichothecene biosynthesis in Fusarium: recent advances and new insights , 2011, Applied Microbiology and Biotechnology.

[14]  Paramvir S. Dehal,et al.  Finished Genome of the Fungal Wheat Pathogen Mycosphaerella graminicola Reveals Dispensome Structure, Chromosome Plasticity, and Stealth Pathogenesis , 2011, PLoS genetics.

[15]  Antonis Rokas,et al.  Horizontal Transfer of a Large and Highly Toxic Secondary Metabolic Gene Cluster between Fungi , 2011, Current Biology.

[16]  J. Pestka Deoxynivalenol: mechanisms of action, human exposure, and toxicological relevance , 2010, Archives of Toxicology.

[17]  M. Rep,et al.  The genomic organization of plant pathogenicity in Fusarium species. , 2010, Current opinion in plant biology.

[18]  J. Palmer,et al.  Involvement of transposon-like elements in penicillin gene cluster regulation. , 2010, Fungal genetics and biology : FG & B.

[19]  G. Thon,et al.  RNAi and heterochromatin repress centromeric meiotic recombination , 2010, Proceedings of the National Academy of Sciences.

[20]  Mariko Sasaki,et al.  Genome destabilization by homologous recombination in the germ line , 2010, Nature Reviews Molecular Cell Biology.

[21]  C. Scazzocchio,et al.  Heterochromatic marks are associated with the repression of secondary metabolism clusters in Aspergillus nidulans , 2010, Molecular microbiology.

[22]  Robert H Proctor,et al.  Evidence that a secondary metabolic biosynthetic gene cluster has grown by gene relocation during evolution of the filamentous fungus Fusarium , 2009, Molecular microbiology.

[23]  Yang Shi,et al.  Loss of YY1 Impacts the Heterochromatic State and Meiotic Double-Strand Breaks during Mouse Spermatogenesis , 2009, Molecular and Cellular Biology.

[24]  M. Gribskov,et al.  The Genome of Nectria haematococca: Contribution of Supernumerary Chromosomes to Gene Expansion , 2009, PLoS genetics.

[25]  Richard G. F. Visser,et al.  Meiosis Drives Extraordinary Genome Plasticity in the Haploid Fungal Plant Pathogen Mycosphaerella graminicola , 2009, PloS one.

[26]  H. Lumbsch,et al.  Ancient Horizontal Gene Transfer from Bacteria Enhances Biosynthetic Capabilities of Fungi , 2009, PloS one.

[27]  L. Steinmetz,et al.  High-resolution mapping of meiotic crossovers and non-crossovers in yeast , 2008, Nature.

[28]  G. Braus,et al.  VelB/VeA/LaeA Complex Coordinates Light Signal with Fungal Development and Secondary Metabolism , 2008, Science.

[29]  Christina A. Cuomo,et al.  The Fusarium graminearum Genome Reveals a Link Between Localized Polymorphism and Pathogen Specialization , 2007, Science.

[30]  Jennifer R Wortman,et al.  Transcriptional Regulation of Chemical Diversity in Aspergillus fumigatus by LaeA , 2007, PLoS pathogens.

[31]  D. Hoffmeister,et al.  Natural products of filamentous fungi: enzymes, genes, and their regulation. , 2007, Natural product reports.

[32]  R. Gregory The evolution of the genome , 2005 .

[33]  H. Giese,et al.  Chromosome Complement of the Fungal Plant Pathogen Fusarium graminearum Based on Genetic and Physical Mapping and Cytological Observations , 2005, Genetics.

[34]  H. Kistler,et al.  Heading for disaster: Fusarium graminearum on cereal crops. , 2004, Molecular plant pathology.

[35]  D. Gardiner,et al.  The sirodesmin biosynthetic gene cluster of the plant pathogenic fungus Leptosphaeria maculans , 2004, Molecular microbiology.

[36]  J. Bok,et al.  LaeA, a Regulator of Secondary Metabolism in Aspergillus spp , 2004, Eukaryotic Cell.

[37]  G. Kema,et al.  A combined amplified fragment length polymorphism and randomly amplified polymorphism DNA genetic kinkage map of Mycosphaerella graminicola, the septoria tritici leaf blotch pathogen of wheat. , 2002, Genetics.

[38]  J. Vederas,et al.  Modulation of polyketide synthase activity by accessory proteins during lovastatin biosynthesis. , 1999, Science.

[39]  K. Ehrlich,et al.  Binding of the C6-zinc cluster protein, AFLR, to the promoters of aflatoxin pathway biosynthesis genes in Aspergillus parasiticus. , 1999, Gene.

[40]  S. Covert Supernumerary chromosomes in filamentous fungi , 1998, Current Genetics.

[41]  A. Nicolas,et al.  Clustering of meiotic double-strand breaks on yeast chromosome III. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[42]  T. C. Nesbitt,et al.  Twenty-five coregulated transcripts define a sterigmatocystin gene cluster in Aspergillus nidulans. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[43]  R. N. Jones,et al.  B chromosomes in plants. , 1995, The New phytologist.

[44]  D. Bhatnagar,et al.  Increased expression of Aspergillus parasiticus aflR, encoding a sequence-specific DNA-binding protein, relieves nitrate inhibition of aflatoxin biosynthesis , 1995, Applied and environmental microbiology.

[45]  M Lichten,et al.  Meiosis-induced double-strand break sites determined by yeast chromatin structure. , 1994, Science.

[46]  S. Covert,et al.  A fungal gene for antibiotic resistance on a dispensable ("B") chromosome. , 1991, Science.

[47]  B. Mcclintock,et al.  The Stability of Broken Ends of Chromosomes in Zea Mays. , 1941, Genetics.

[48]  B. Mcclintock The Production of Homozygous Deficient Tissues with Mutant Characteristics by Means of the Aberrant Mitotic Behavior of Ring-Shaped Chromosomes. , 1938, Genetics.

[49]  J. Dutheil,et al.  Comparing fungal genomes: insight into functional and evolutionary processes. , 2012, Methods in molecular biology.

[50]  Burt,et al.  Genes in Conflict , 2008 .