Planar Antiaromatic Core-Modified 24π Hexaphyrin(1.0.1.0.1.0) and 32π Octaphyrin(1.0.1.0.1.0.1.0) Bearing Alternate Hybrid Diheterole Units.

The Lewis acid catalyzed self-condensation of hybrid diheterole (furan-pyrrole and thiophene-pyrrole) precursors has afforded novel Hückel antiaromatic 24π hexaphyrin(1.0.1.0.1.0) and 32π octaphyrin(1.0.1.0.1.0.1.0) structures without β-annulated bridges. Single-crystal X-ray diffraction analysis of the hybrid porphyrinoids (S3 N3 -ox and O4 N4 -ox) revealed a nearly planar conformation and the 1 H NMR spectra suggest the presence of paratropic ring currents. These antiaromatic macrocycles show characteristic optical features and underwent reversible two-electron reduction to Hückel aromatic 26π- and 34π-electron species, respectively, as is evident from the results of spectroscopic and theoretical studies (nucleus-independent chemical shift (NICS) and anisotropy of the current-induced density (ACID) calculations). The incorporation of hybrid diheteroles alternately into expanded porphyrin skeletons provides a novel approach to the fine-tuning of the electronic structures of planar antiaromatic macrocycles.

[1]  M. D. Moore,et al.  Proton-Coupled Redox Switching in an Annulated π-Extended Core-Modified Octaphyrin. , 2018, Journal of the American Chemical Society.

[2]  Jong Min Lim,et al.  Structural, Photophysical, and Magnetic Circular Dichroism Studies of Three Rigidified meso-Pentafluorophenyl-Substituted Hexaphyrin Analogues. , 2017, Chemistry.

[3]  V. Lynch,et al.  Expanded Rosarin: A Versatile Fullerene (C60) Receptor. , 2017, Journal of the American Chemical Society.

[4]  A. Osuka,et al.  Chemistry of meso-Aryl-Substituted Expanded Porphyrins: Aromaticity and Molecular Twist. , 2017, Chemical reviews.

[5]  V. Anand,et al.  Isophlorinoids: The Antiaromatic Congeners of Porphyrinoids. , 2017, Chemical reviews.

[6]  J. Setsune 2,2'-Bipyrrole-Based Porphyrinoids. , 2017, Chemical reviews.

[7]  T. Sarma,et al.  Annulated Isomeric, Expanded, and Contracted Porphyrins. , 2017, Chemical reviews.

[8]  Neelam Shivran,et al.  "To Twist or Not to Twist": Figure-of-Eight and Planar Structures of Octaphyrins. , 2017, Chemistry, an Asian journal.

[9]  T. K. Chandrashekar,et al.  [40]π Fused and Nonfused Core-Modified Nonaphyrins: Syntheses and Structural Diversity. , 2016, Chemistry.

[10]  K. Ohkubo,et al.  Formation of Ground State Triplet Diradicals from Annulated Rosarin Derivatives by Triprotonation. , 2015, Journal of the American Chemical Society.

[11]  T. Fujihara,et al.  Synthesis and antiaromatic properties of highly planar dithiaamethyrin. , 2015, Chemistry, an Asian journal.

[12]  G. Sheldrick Crystal structure refinement with SHELXL , 2015, Acta crystallographica. Section C, Structural chemistry.

[13]  Tullimilli Y. Gopalakrishna,et al.  An amphoteric switch to aromatic and antiaromatic states of a neutral air-stable 25π radical. , 2014, Angewandte Chemie.

[14]  H. Szatyłowicz,et al.  Aromaticity from the viewpoint of molecular geometry: application to planar systems. , 2014, Chemical reviews.

[15]  Miłosz Pawlicki,et al.  Synthesis and switching the aromatic character of oxatriphyrins(2.1.1). , 2014, Angewandte Chemie.

[16]  H. Shinokubo,et al.  Selective synthesis of a [32]octaphyrin(1.0.1.0.1.0.1.0) bis(palladium) complex by a metal-templated strategy. , 2013, Angewandte Chemie.

[17]  P. Karadakov,et al.  Chemical bonding and aromaticity in furan, pyrrole, and thiophene: a magnetic shielding study. , 2013, The Journal of organic chemistry.

[18]  V. Anand,et al.  Metal-assisted cyclomerization of N-confused dipyrrins into expanded norroles. , 2013, Angewandte Chemie.

[19]  Tullimilli Y. Gopalakrishna,et al.  Antiaromatic supramolecules: F···S, F···Se, and F···π intermolecular interactions in 32π expanded isophlorins. , 2013, Angewandte Chemie.

[20]  H. Furuta,et al.  Blooming of confused porphyrinoids--fusion, expansion, contraction, and more confusion. , 2012, Chemical communications.

[21]  A. Osuka,et al.  Expandierte Porphyrine: überraschende Strukturen, elektronische Eigenschaften und Reaktivitäten , 2011 .

[22]  M. Stępień,et al.  Figure eights, Möbius bands, and more: conformation and aromaticity of porphyrinoids. , 2011, Angewandte Chemie.

[23]  Lechosław Latos‐Grażyński,et al.  Figure‐Eight‐Strukturen, Möbius‐Bänder und mehr: Konformation und Aromatizität von Porphyrinoiden , 2011 .

[24]  A. Osuka,et al.  Expanded porphyrins: intriguing structures, electronic properties, and reactivities. , 2011, Angewandte Chemie.

[25]  Jong Min Lim,et al.  Aromaticity and photophysical properties of various topology-controlled expanded porphyrins. , 2010, Chemical Society reviews.

[26]  Dongho Kim,et al.  Defining spectroscopic features of heteroannulenic antiaromatic porphyrinoids , 2010 .

[27]  Tohru Nishinaga,et al.  Recent Studies on the Aromaticity and Antiaromaticity of Planar Cyclooctatetraene , 2010, Symmetry.

[28]  V. Anand,et al.  Aromatic expanded isophlorins: stable 30pi annulene analogues with diverse structural features. , 2009, Journal of the American Chemical Society.

[29]  Masaaki Suzuki,et al.  Aromatic versus antiaromatic effect on photophysical properties of conformationally locked trans-vinylene-bridged hexaphyrins. , 2009, Journal of the American Chemical Society.

[30]  T. K. Chandrashekar,et al.  Structural diversity in expanded porphyrins. , 2008, Accounts of chemical research.

[31]  Jong Min Lim,et al.  The photophysical properties of expanded porphyrins: relationships between aromaticity, molecular geometry and non-linear optical properties. , 2008, Chemical communications.

[32]  F. Bickelhaupt,et al.  Aromaticity: molecular-orbital picture of an intuitive concept. , 2007, Chemistry.

[33]  S. Buchwald,et al.  Highly efficient monophosphine-based catalyst for the palladium-catalyzed suzuki-miyaura reaction of heteroaryl halides and heteroaryl boronic acids and esters. , 2007, Journal of the American Chemical Society.

[34]  S. Mandal,et al.  Cyclic oligofurans: one-pot synthesis of 30pi and 40pi expanded porphyrinoids. , 2006, Organic letters.

[35]  S. Buchwald,et al.  A highly active catalyst for Suzuki-Miyaura cross-coupling reactions of heteroaryl compounds. , 2006, Angewandte Chemie.

[36]  R. Herges,et al.  Anisotropy of the induced current density (ACID), a general method to quantify and visualize electronic delocalization. , 2005, Chemical reviews.

[37]  J. Sessler,et al.  Synthetic expanded porphyrin chemistry. , 2003, Angewandte Chemie.

[38]  Jonathan L. Sessler,et al.  Synthesechemie expandierter Porphyrine , 2003 .

[39]  T. K. Chandrashekar,et al.  Core-modified expanded porphyrins: new generation organic materials. , 2003, Accounts of chemical research.

[40]  A. Osuka,et al.  Confusion, inversion, and creation--a new spring from porphyrin chemistry. , 2002, Chemical communications.

[41]  Rainer Herges and,et al.  Delocalization of Electrons in Molecules , 2001 .

[42]  T. M. Krygowski,et al.  Structural aspects of aromaticity. , 2001, Chemical reviews.

[43]  S. Maeda,et al.  Bis(azafulvene) as a Versatile Building Block for Giant Cyclopolypyrroles: X-ray Crystal Structure of [64]Hexadecaphyrin(1.0.1.0.1.0.1.0.1.0.1.0.1.0.1.0) , 2000 .

[44]  J. Dobkowski,et al.  SPECTROSCOPY AND PHOTOPHYSICS OF A HIGHLY NONPLANAR EXPANDED PORPHYRIN : 4,9,13,18,22,27-HEXAETHYL-5,8,14,17,23,26-HEXAMETHYL-2,11,20-TRIPHENYLROSARIN , 1999 .

[45]  J. Setsune,et al.  [48]Dodecaphyrin-(1.0.1.0.1.0.1.0.1.0.1.0) and [64]Hexadecaphyrin-(1.0.1.0.1.0.1.0.1.0.1.0.1.0.1.0): The Largest Cyclopolypyrroles , 1999 .

[46]  David Dolphin,et al.  Expanded Porphyrins and Their Heterologs. , 1997, Chemical reviews.

[47]  A. Streitwieser,et al.  Origin of depressed dipole moments in five- membered, unsaturated heterocycles , 1996 .

[48]  K. Houk,et al.  Octaphyrin‐(1.0.1.0.1.0.1.0) , 1995 .

[49]  E. Vogel The porphyrins from the 'annulene chemist's' perspective , 1993 .

[50]  V. Lynch,et al.  Rosarin: a new, easily prepared hexapyrrolic expanded porphyrin , 1992 .

[51]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[52]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[53]  Michał J. Białek,et al.  Flexible Porphyrinoids. , 2017, Chemical reviews.

[54]  Byung Sun Lee,et al.  Protonation-coupled redox reactions in planar antiaromatic meso-pentafluorophenyl-substituted o-phenylene-bridged annulated rosarins. , 2013, Nature chemistry.

[55]  Patricia J. Melfi,et al.  Synthesis and characterization of a hexaphyrin(1.0.1.0.0.0) bearing both meso- and β-substituents , 2007 .

[56]  T. K. Chandrashekar,et al.  meso-substituted aromatic 34pi core-modified octaphyrins: syntheses, characterization and anion binding properties. , 2003, Chemistry.

[57]  Martin R. Johnson,et al.  Synthesis and characterization of a new [4.0.4.0] porphyrin‐like antiaromatic macrocycle , 1997 .