Lightweight Quantum Security Protocols.

Inspired by the semi-quantum protocols, this paper defines the lightweight quantum security protocols, in which lightweight participants can only operate two out of four very lightweight quantum operations. Subsequently, this study proposes a Lightweight Mediated Quantum Key Distribution (LMQKD) protocol as an example to disclose the feasibility and advantage of the lightweight quantum protocol. In the proposed protocol, a dishonest third party (TP) with complete quantum capabilities helps two lightweight quantum users establish a secure key. The lightweight quantum users are allowed to perform only: (1) unitary operations and (2) reflecting qubits without disturbance. The proposed protocol has been showed to be robust under the collective attack.

[1]  Chun-Wei Yang,et al.  Lightweight authenticated semi-quantum key distribution protocol without trojan horse attack , 2020, Laser Physics Letters.

[2]  Zhenhua Li,et al.  Long-distance measurement-device–independent quantum secure direct communication , 2019, EPL (Europhysics Letters).

[3]  Liuguo Yin,et al.  Measurement-device-independent quantum communication without encryption. , 2018, Science bulletin.

[4]  Tzonelih Hwang,et al.  Mediated Semi‐Quantum Key Distribution Without Invoking Quantum Measurement , 2018 .

[5]  Arpita Maitra,et al.  Measurement device-independent quantum dialogue , 2017, Quantum Information Processing.

[6]  Hui Liu,et al.  Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber. , 2016, Physical review letters.

[7]  Yang Liu,et al.  Measurement-device-independent quantum key distribution over untrustful metropolitan network , 2015, 1509.08389.

[8]  Feihu Xu Measurement-device-independent quantum communication with an untrusted source , 2015, 1508.00970.

[9]  Shengyu Zhang,et al.  Semiquantum key distribution without invoking the classical party’s measurement capability , 2015, Quantum Information Processing.

[10]  Daowen Qiu,et al.  A Novel Semi-Quantum Secret Sharing Scheme of Specific Bits , 2015, International Journal of Theoretical Physics.

[11]  Yao Fu,et al.  Long-distance measurement-device-independent multiparty quantum communication. , 2014, Physical review letters.

[12]  Walter O. Krawec Mediated semiquantum key distribution , 2014, 1411.6024.

[13]  Jian-Wei Pan,et al.  Measurement-device-independent quantum key distribution over 200 km. , 2014, Physical review letters.

[14]  Daowen Qiu,et al.  Three-step semiquantum secure direct communication protocol , 2014, Science China Physics, Mechanics & Astronomy.

[15]  Li Qian,et al.  Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution. , 2013, Physical review letters.

[16]  Hoi-Kwong Lo,et al.  Long distance measurement-device-independent quantum key distribution with entangled photon sources , 2013, 1306.5814.

[17]  Hermann Kampermann,et al.  Measurement-device-independent quantum key distribution with quantum memories , 2013, 1306.3095.

[18]  Philip Birch,et al.  Coherent optical implementations of the fast Fourier transform and their comparison to the optical implementation of the quantum Fourier transform , 2013, Defense, Security, and Sensing.

[19]  Daowen Qiu,et al.  Quantum secret sharing with classical Bobs , 2013 .

[20]  M. Fejer,et al.  Experimental measurement-device-independent quantum key distribution. , 2012, Physical review letters.

[21]  M. Curty,et al.  Measurement-device-independent quantum key distribution. , 2011, Physical review letters.

[22]  Chia-Wei Tsai,et al.  Probabilistic quantum key distribution , 2011, Quantum Inf. Comput..

[23]  M. Ježek,et al.  Experimental demonstration of a Hadamard gate for coherent state qubits , 2011, 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC).

[24]  Xiangfu Zou,et al.  Reply to ``Comment on `Semiquantum-key distribution using less than four quantum states' '' , 2010, 1010.4233.

[25]  Tal Mor,et al.  Comment on "Semiquantum-key distribution using less than four quantum states" , 2010, 1010.2221.

[26]  Hong-Yu Zhou,et al.  ERROR-REJECTING BENNETT–BRASSARD–MERMIN QUANTUM KEY DISTRIBUTION PROTOCOL BASED ON LINEAR OPTICS OVER A COLLECTIVE-NOISE CHANNEL , 2010 .

[27]  Fei Gao,et al.  Dense-Coding Attack on Three-Party Quantum Key Distribution Protocols , 2010, IEEE Journal of Quantum Electronics.

[28]  Tzonelih Hwang,et al.  New Efficient Three-Party Quantum Key Distribution Protocols , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[29]  Daowen Qiu,et al.  Semiquantum-key distribution using less than four quantum states , 2009 .

[30]  Yu-Bo Sheng,et al.  Fault tolerant quantum key distribution based on quantum dense coding with collective noise , 2009, 0904.0056.

[31]  Ran Gelles,et al.  Semi-Quantum Key Distribution , 2008, ArXiv.

[32]  Xi-Han Li,et al.  Efficient quantum key distribution over a collective noise channel (6 pages) , 2008, 0808.0042.

[33]  Yu-Bo Sheng,et al.  STABLE AND DETERMINISTIC QUANTUM KEY DISTRIBUTION BASED ON DIFFERENTIAL PHASE SHIFT , 2008, 0801.0259.

[34]  Zhan-Jun Zhang,et al.  An efficient multiparty quantum key distribution scheme , 2005 .

[35]  J. Cirac,et al.  Experimental demonstration of quantum memory for light , 2004, Nature.

[36]  G. Long,et al.  Theoretically efficient high-capacity quantum-key-distribution scheme , 2000, quant-ph/0012056.

[37]  Shor,et al.  Simple proof of security of the BB84 quantum key distribution protocol , 2000, Physical review letters.

[38]  H. Chau,et al.  Unconditional security of quantum key distribution over arbitrarily long distances , 1998, Science.

[39]  G. Brassard,et al.  Security of Quantum Key Distribution against All Collective Attacks , 1998, Algorithmica.

[40]  Ueli Maurer,et al.  Generalized privacy amplification , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.

[41]  Gilles Brassard,et al.  Privacy Amplification by Public Discussion , 1988, SIAM J. Comput..

[42]  Chen Pan,et al.  Measuring-Basis Encrypted Quantum Key Distribution with Four-State Systems , 2007 .