Characteristics of Transposable Element Exonization within Human and Mouse

Insertion of transposed elements within mammalian genes is thought to be an important contributor to mammalian evolution and speciation. Insertion of transposed elements into introns can lead to their activation as alternatively spliced cassette exons, an event called exonization. Elucidation of the evolutionary constraints that have shaped fixation of transposed elements within human and mouse protein coding genes and subsequent exonization is important for understanding of how the exonization process has affected transcriptome and proteome complexities. Here we show that exonization of transposed elements is biased towards the beginning of the coding sequence in both human and mouse genes. Analysis of single nucleotide polymorphisms (SNPs) revealed that exonization of transposed elements can be population-specific, implying that exonizations may enhance divergence and lead to speciation. SNP density analysis revealed differences between Alu and other transposed elements. Finally, we identified cases of primate-specific Alu elements that depend on RNA editing for their exonization. These results shed light on TE fixation and the exonization process within human and mouse genes.

[1]  Brenton R Graveley,et al.  The haplo-spliceo-transcriptome: common variations in alternative splicing in the human population. , 2008, Trends in genetics : TIG.

[2]  J. Jurka,et al.  A universal classification of eukaryotic transposable elements implemented in Repbase , 2008, Nature Reviews Genetics.

[3]  Ryan E. Mills,et al.  Which transposable elements are active in the human genome? , 2007, Trends in genetics : TIG.

[4]  Schraga Schwartz,et al.  Alu Exonization Events Reveal Features Required for Precise Recognition of Exons by the Splicing Machinery , 2009, PLoS Comput. Biol..

[5]  M. Batzer,et al.  Evolution of Retroposons , 1993 .

[6]  G. Ast,et al.  Multifactorial Interplay Controls the Splicing Profile of Alu-Derived Exons , 2008, Molecular and Cellular Biology.

[7]  Eli Eisenberg,et al.  RNA-editing-mediated exon evolution , 2007, Genome Biology.

[8]  J. Jurka,et al.  Evolutionary history of 7SL RNA-derived SINEs in Supraprimates. , 2007, Trends in genetics : TIG.

[9]  G. Ast,et al.  SERpredict: Detection of tissue- or tumor-specific isoforms generated through exonization of transposable elements , 2007, BMC Genetics.

[10]  M. Soares,et al.  High-throughput sequence-based epigenomic analysis of Alu repeats in human cerebellum , 2009, Nucleic acids research.

[11]  N. Bresolin,et al.  Fixation of conserved sequences shapes human intron size and influences transposon-insertion dynamics. , 2005, Trends in genetics : TIG.

[12]  A. Nekrutenko,et al.  Transposable elements are found in a large number of human protein-coding genes. , 2001, Trends in genetics : TIG.

[13]  J. Brosius,et al.  Functional persistence of exonized mammalian-wide interspersed repeat elements (MIRs). , 2007, Genome research.

[14]  Elizabeth M. Smigielski,et al.  dbSNP: the NCBI database of genetic variation , 2001, Nucleic Acids Res..

[15]  Tao Liu,et al.  NONCODE v2.0: decoding the non-coding , 2007, Nucleic Acids Res..

[16]  S. Scherer,et al.  Identification and characterization of an imprinted antisense RNA (MESTIT1) in the human MEST locus on chromosome 7q32. , 2002, Human molecular genetics.

[17]  Rotem Sorek,et al.  The birth of new exons: mechanisms and evolutionary consequences. , 2007, RNA.

[18]  André Corvelo,et al.  Exon creation and establishment in human genes , 2008, Genome Biology.

[19]  Agnes Hotz-Wagenblatt,et al.  Comparative analysis of transposed element insertion within human and mouse genomes reveals Alu's unique role in shaping the human transcriptome , 2007, Genome Biology.

[20]  J. Nemes,et al.  The SCA8 transcript is an antisense RNA to a brain-specific transcript encoding a novel actin-binding protein (KLHL1). , 2000, Human molecular genetics.

[21]  D. Cane,et al.  The nonsense-mediated decay RNA surveillance pathway. , 2007, Annual review of biochemistry.

[22]  G. Ast,et al.  Different levels of alternative splicing among eukaryotes , 2006, Nucleic acids research.

[23]  T. Bird,et al.  An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8) , 1999, Nature Genetics.

[24]  G. Ast,et al.  Biased exonization of transposed elements in duplicated genes: A lesson from the TIF-IA gene , 2007, BMC Molecular Biology.

[25]  W. Eckert,et al.  Characterization of an authentic intermediate in the self-splicing process of ribosomal precursor RNA in macronuclei of Tetrahymena thermophila. , 1987, Nucleic acids research.

[26]  M. Batzer,et al.  Alu repeats and human disease. , 1999, Molecular genetics and metabolism.

[27]  Lan Lin,et al.  Large-scale analysis of exonized mammalian-wide interspersed repeats in primate genomes. , 2009, Human molecular genetics.

[28]  Richard Wooster,et al.  A survey of RNA editing in human brain. , 2004, Genome research.

[29]  Dan Graur,et al.  Minimal conditions for exonization of intronic sequences: 5' splice site formation in alu exons. , 2004, Molecular cell.

[30]  Jacek Majewski,et al.  Genome-wide analysis of transcript isoform variation in humans , 2008, Nature Genetics.

[31]  Zipora Y. Fligelman,et al.  Systematic identification of abundant A-to-I editing sites in the human transcriptome , 2004, Nature Biotechnology.

[32]  Noam Shomron,et al.  The Birth of an Alternatively Spliced Exon: 3' Splice-Site Selection in Alu Exons , 2003, Science.

[33]  International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome , 2001, Nature.

[34]  E. Eyras,et al.  The Pivotal Roles of TIA Proteins in 5′ Splice-Site Selection of Alu Exons and Across Evolution , 2009, PLoS genetics.

[35]  S. Brenner,et al.  An unappreciated role for RNA surveillance , 2004, Genome Biology.

[36]  T. Matise,et al.  Widespread RNA editing of embedded alu elements in the human transcriptome. , 2004, Genome research.

[37]  M. Hentze,et al.  The Hierarchy of Exon-Junction Complex Assembly by the Spliceosome Explains Key Features of Mammalian Nonsense-Mediated mRNA Decay , 2009, PLoS biology.

[38]  Gil Ast,et al.  The importance of being divisible by three in alternative splicing , 2005, Nucleic acids research.

[39]  Tom H. Pringle,et al.  The human genome browser at UCSC. , 2002, Genome research.

[40]  Dan Graur,et al.  Alu-containing exons are alternatively spliced. , 2002, Genome research.

[41]  Gil Ast,et al.  How did alternative splicing evolve? , 2004, Nature Reviews Genetics.

[42]  Terrence S. Furey,et al.  The UCSC Table Browser data retrieval tool , 2004, Nucleic Acids Res..

[43]  Alexander Rich,et al.  Widespread A-to-I RNA Editing of Alu-Containing mRNAs in the Human Transcriptome , 2004, PLoS biology.

[44]  D. Labuda,et al.  Sequence conservation in Alu evolution. , 1989, Nucleic acids research.

[45]  M. Batzer,et al.  Alu repeats and human genomic diversity , 2002, Nature Reviews Genetics.

[46]  N. Bresolin,et al.  Gene function and expression level influence the insertion/fixation dynamics of distinct transposon families in mammalian introns , 2006, Genome Biology.

[47]  J. Brosius,et al.  From "junk" to gene: curriculum vitae of a primate receptor isoform gene. , 2004, Journal of molecular biology.

[48]  Mary Goldman,et al.  The UCSC Genome Browser database: update 2011 , 2010, Nucleic Acids Res..

[49]  Yi Xing,et al.  Evidence for a subpopulation of conserved alternative splicing events under selection pressure for protein reading frame preservation. , 2004, Nucleic acids research.

[50]  L. Chasin,et al.  Comparison of multiple vertebrate genomes reveals the birth and evolution of human exons , 2006, Proceedings of the National Academy of Sciences.

[51]  Wei-Lun Chen,et al.  SCA8 mRNA expression suggests an antisense regulation of KLHL1 and correlates to SCA8 pathology , 2008, Brain Research.

[52]  Yi Zhao,et al.  NONCODE: an integrated knowledge database of non-coding RNAs , 2004, Nucleic Acids Res..

[53]  Richard Cordaux,et al.  Estimating the retrotransposition rate of human Alu elements. , 2006, Gene.

[54]  Asaf Levy,et al.  TranspoGene and microTranspoGene: transposed elements influence on the transcriptome of seven vertebrates and invertebrates , 2007, Nucleic Acids Res..

[55]  Yi Xing,et al.  Diverse Splicing Patterns of Exonized Alu Elements in Human Tissues , 2008, PLoS genetics.

[56]  W. Keller,et al.  Two forms of human double-stranded RNA-specific editase 1 (hRED1) generated by the insertion of an Alu cassette. , 1997, RNA.

[57]  J. V. Moran,et al.  Initial sequencing and analysis of the human genome. , 2001, Nature.

[58]  Daniel J. Blankenberg,et al.  Galaxy: a platform for interactive large-scale genome analysis. , 2005, Genome research.

[59]  Nadav Ahituv,et al.  Alternative approach to a heavy weight problem. , 2008, Genome research.

[60]  H. Xue,et al.  Alu-associated enhancement of single nucleotide polymorphisms in the human genome. , 2006, Gene.

[61]  Martin S. Taylor,et al.  Identification of Common Genetic Variation That Modulates Alternative Splicing , 2007, PLoS genetics.

[62]  Jong Bhak,et al.  ssSNPTarget: genome‐wide splice‐site single nucleotide polymorphism database , 2009, Human mutation.

[63]  David Haussler,et al.  The UCSC genome browser database: update 2007 , 2006, Nucleic Acids Res..

[64]  Mouse Genome Sequencing Consortium Initial sequencing and comparative analysis of the mouse genome , 2002, Nature.

[65]  D. Labuda,et al.  Alu sequences in the coding regions of mRNA: a source of protein variability. , 1994, Trends in genetics : TIG.

[66]  J. Jurka Repbase update: a database and an electronic journal of repetitive elements. , 2000, Trends in genetics : TIG.

[67]  David N. Messina,et al.  Evolutionary and Biomedical Insights from the Rhesus Macaque Genome , 2007, Science.

[68]  Christopher J. Lee,et al.  Alternative splicing and RNA selection pressure — evolutionary consequences for eukaryotic genomes , 2006, Nature Reviews Genetics.

[69]  Christopher J. Lee,et al.  The effect of intron length on exon creation ratios during the evolution of mammalian genomes. , 2008, RNA.

[70]  J. Brosius,et al.  Beyond DNA: RNA editing and steps toward Alu exonization in primates. , 2008, Journal of molecular biology.

[71]  J. Jurka,et al.  Repbase Update, a database of eukaryotic repetitive elements , 2005, Cytogenetic and Genome Research.

[72]  G. Ast,et al.  Alternative splicing of Alu exons—two arms are better than one , 2008, Nucleic acids research.

[73]  Harry Zuzan,et al.  Heritability of alternative splicing in the human genome. , 2007, Genome research.

[74]  H. Xue,et al.  Association of SNPs and haplotypes in GABAA receptor β2 gene with schizophrenia , 2004, Molecular Psychiatry.