Survey of mobility approaches for EVR application in space station

This paper mainly presents the survey of mobility approaches for the Extra Vehicular Robotics (EVR) application in space station. Seven different kinds of mobility approaches are identified, including straight rail mobile approach, inchworm-like movement approach, free flying vehicle/robot with docking approach, handrail climbing approach, mobile base with circular climbing approach and long manipulator transferring approach. The performance and difference of each approach are elaborated carefully, which offers reference for further research.

[1]  Phung K. Nguyen,et al.  RMS OPERATIONS SUPPORT: FROM THE SPACE SHUTTLE TO THE SPACE STATION , 2001 .

[2]  Bruce D. Dvorak Hypervelocity impact testing of the pressurized mating adapters for the International Space Station , 1999 .

[3]  Steven E. Fredrickson,et al.  Mini AERCam: development of a free-flying nanosatellite inspection robot , 2003, SPIE Defense + Commercial Sensing.

[4]  Thomas W. Carroll The design and development of a mobile transporter system for the Space Station Remote Manipulator System , 1987 .

[5]  Martin M. Mikulas,et al.  Conceptual design of a mobile remote manipulator system , 1984 .

[6]  Jack P. Brazzel,et al.  Challenges of Orion Rendezvous Development , 2007 .

[7]  Douglas O. Stanley A space transportation architecture for the future , 2000 .

[8]  Louis H. Nguyen,et al.  MODELING AND SIMULATION OF THE MOBILE TRANSPORTER SYSTEM OF INTERNATIONAL SPACE STATION , 1998 .

[9]  Eduardo Bayo,et al.  Optimal Output-Trajectory Tracking: Application to Mobile Transporter , 2000 .

[10]  Erick Dupuis,et al.  Validation of Ground Control Technology for International Space Station Robot Systems , 2001 .

[11]  Yangsheng Xu,et al.  The design of robot for space station operation , 2012, 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[12]  Steven E. Fredrickson,et al.  Application of the mini AERCam free flyer for orbital inspection , 2004, SPIE Defense + Commercial Sensing.

[13]  Robert O. Ambrose,et al.  Mobile manipulation using NASA's Robonaut , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[14]  József Kövecses,et al.  Effect of Attitude Control Jets on the performance of the Space Station Robotic Manipulator System (SSRMS) A Case Study on Flights 6A and 7A , 2001 .

[15]  R. O. Ambrose,et al.  Robonaut 2 — Initial activities on-board the ISS , 2012, 2012 IEEE Aerospace Conference.

[16]  Adam Gilmore,et al.  Failure of the Trailing Umbilical System Disconnect Actuator on the International Space Station , 2008 .

[17]  Ross A. Knepper,et al.  Path planning and control for AERCam, a free-flying inspection robot in space , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[18]  Fredrik Rehnmark,et al.  An experimental investigation of robotic spacewalking , 2004, 4th IEEE/RAS International Conference on Humanoid Robots, 2004..

[19]  M.F. Stieber,et al.  Robotic systems for the International Space Station , 1997, Proceedings of International Conference on Robotics and Automation.

[20]  Fredrik Rehnmark,et al.  The challenges of extra-vehicular robotic locomotion aboard orbiting spacecraft , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[21]  Yangsheng Xu,et al.  Optimization for rail-type climbing robot in space , 2013, 2013 IEEE International Conference on Mechatronics and Automation.

[22]  Éric Marchand,et al.  Robust stereo tracking for space applications , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[23]  T Kelly,et al.  Engineering challenges to the long term operation of the International Space Station. , 2001, Acta astronautica.

[24]  A. Ali Mandvi Umbilical mechanism assembly for the international space station , 1996 .

[25]  Richard A. Volz,et al.  Telerobotic ground control of a space free-flyer , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).

[26]  Lorraine E. P. Williams,et al.  Robonaut: a telepresence-based astronaut assistant , 2002, SPIE Optics East.

[27]  Éric Marchand,et al.  Stereo Tracking and Servoing for Space Applications , 2009, Adv. Robotics.

[28]  Mark S. Lake,et al.  Mobile transporter concept for extravehicular activity assembly of future spacecraft , 1992 .

[29]  Érick Dupuis,et al.  Recent Canadian Activities in Space Automation & Robotics - An Overview , 2001 .

[30]  Robert O. Ambrose,et al.  Evolution of the NASA/DARPA Robonaut control system , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).