A least-squares parameter estimation algorithm for switched Hammerstein systems with applications to the VOR
暂无分享,去创建一个
[1] R. Schmid,et al. On the predominance of anti-compensatory eye movements in vestibular nystagmus , 1976, Biological Cybernetics.
[2] Donald M. Wiberg,et al. Dynamic system identification: Experiment design and data analysis , 1983 .
[3] R. Walker,et al. A model of saccade generation based on parallel processing and competitive inhibition , 1999, Behavioral and Brain Sciences.
[4] Ian W. Hunter,et al. Automatic Classification of Protein Sequences into Structure/Function Groups via Parallel Cascade Identification: A Feasibility Study , 2000, Annals of Biomedical Engineering.
[5] Lennart Ljung,et al. System Identification: Theory for the User , 1987 .
[6] Manfred Morari,et al. A clustering technique for the identification of piecewise affine systems , 2001, Autom..
[7] H L Galiana,et al. Vestibulo-ocular reflex (VOR) biases in normal subjects and patients with compensated vestibular loss. , 1995, Acta oto-laryngologica.
[8] Robert E. Kearney,et al. Parametric identification of nonlinear hybrid systems , 1999, Proceedings of the First Joint BMES/EMBS Conference. 1999 IEEE Engineering in Medicine and Biology 21st Annual Conference and the 1999 Annual Fall Meeting of the Biomedical Engineering Society (Cat. N.
[9] Sheng Chen,et al. Representations of non-linear systems: the NARMAX model , 1989 .
[10] M. J. Korenberg,et al. A robust orthogonal algorithm for system identification and time-series analysis , 1989, Biological Cybernetics.
[11] K Beykirch,et al. Horizontal vestibulo-ocular reflex after acute peripheral lesions. , 1989, Acta oto-laryngologica. Supplementum.
[12] C.G. Rey,et al. Parametric classification of segments in ocular nystagmus , 1991, IEEE Transactions on Biomedical Engineering.
[13] H L Galiana,et al. Comparison of linear vs. non-linear methods for analysing the vestibulo-ocular reflex (VOR). , 1995, Acta oto-laryngologica.
[14] D. A. Robinson,et al. A model of quick phase generation in the vestibuloocular reflex , 1978, Biological Cybernetics.
[15] S. Billings,et al. Orthogonal parameter estimation algorithm for non-linear stochastic systems , 1988 .
[16] I. J. Leontaritis,et al. Input-output parametric models for non-linear systems Part II: stochastic non-linear systems , 1985 .
[17] N. Shimizu. [Neurology of eye movements]. , 2000, Rinsho shinkeigaku = Clinical neurology.
[18] Sheng Chen,et al. Extended model set, global data and threshold model identification of severely non-linear systems , 1989 .
[19] Alberto Bemporad,et al. A Greedy Approach to Identification of Piecewise Affine Models , 2003, HSCC.
[20] S. Shankar Sastry,et al. Conflict resolution for air traffic management: a study in multiagent hybrid systems , 1998, IEEE Trans. Autom. Control..
[21] Thomas A. Henzinger,et al. Modularity for Timed and Hybrid Systems , 1997, CONCUR.
[22] Heinz Unbehauen,et al. Bilinear Continuous-Time Systems Identification via Hartley-Based Modulating Functions , 1998, Autom..
[23] Lennart Ljung,et al. Nonlinear black-box modeling in system identification: a unified overview , 1995, Autom..
[24] S. Billings,et al. Least squares parameter estimation algorithms for non-linear systems , 1984 .
[25] V. Panuska. A stochastic approximation method for identification of linear systems using adaptive filtering , 1968 .
[26] Henrietta L. Galiana,et al. The role of structural symmetry in linearizing ocular reflexes , 1991, Biological Cybernetics.
[27] H. L. Galiana,et al. Transient analysis of vestibular nystagmus , 2005, Biological Cybernetics.
[28] Alberto Bemporad,et al. Identification of piecewise affine systems via mixed-integer programming , 2004, Autom..
[29] P. Young. The use of linear regression and related procedures for the identification of dynamic processes , 1968 .
[30] Petre Stoica,et al. Asymptotic behaviour of some bootstrap estimators , 1981 .
[31] D. Whitteridge. Movements of the eyes R. H. S. Carpenter, Pion Ltd, London (1977), 420 pp., $27.00 , 1979, Neuroscience.
[32] R. Kearney,et al. A bootstrap method for structure detection of NARMAX models , 2004 .
[33] S. A. Billings,et al. Identification of continuous time nonlinear systems using delayed state variable filters , 1994 .
[34] J. M. Schumacher,et al. Impulsive-smooth behavior in multimode systems part I: State-space and polynomial representations , 1996, Autom..
[35] P. Young,et al. Time series analysis, forecasting and control , 1972, IEEE Transactions on Automatic Control.
[36] Thomas A. Henzinger,et al. The theory of hybrid automata , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.
[37] Paul Gastin,et al. On the Power of Non-Observable Actions in Timed Automata , 1996, STACS.
[38] V. Panuska. An adaptive recursive-least-squares identification algorithm , 1969 .
[39] Tien C. Hsia,et al. System identification: Least-squares methods , 1977 .
[40] John G. Proakis,et al. Digital Signal Processing: Principles, Algorithms, and Applications , 1992 .
[41] Heinz Unbehauen,et al. Continuous-time approaches to system identification - A survey , 1990, Autom..
[42] H.L. Galiana. A nystagmus strategy to linearize the vestibulo-ocular reflex , 1991, IEEE Transactions on Biomedical Engineering.