A least-squares parameter estimation algorithm for switched Hammerstein systems with applications to the VOR

A "multimode" or "switched" system is one that switches between various modes of operation. When a switch occurs from one mode to another, a discontinuity may result followed by a smooth evolution under the new regime. Characterizing the switching behavior of these systems is not well understood and, therefore, identification of multimode systems typically requires a preprocessing step to classify the observed data according to a mode of operation. A further consequence of the switched nature of these systems is that data available for parameter estimation of any subsystem may be inadequate. As such, identification and parameter estimation of multimode systems remains an unresolved problem. We 1) show that the NARMAX model structure can be used to describe the impulsive-smooth behavior of switched systems, 2) propose a modified extended least squares (MELS) algorithm to estimate the coefficients of such models, and 3) demonstrate its applicability to simulated and real data from the Vestibulo-Ocular Reflex (VOR). The approach will also allow the identification of other nonlinear bio-systems, suspected of containing "hard" nonlinearities.

[1]  R. Schmid,et al.  On the predominance of anti-compensatory eye movements in vestibular nystagmus , 1976, Biological Cybernetics.

[2]  Donald M. Wiberg,et al.  Dynamic system identification: Experiment design and data analysis , 1983 .

[3]  R. Walker,et al.  A model of saccade generation based on parallel processing and competitive inhibition , 1999, Behavioral and Brain Sciences.

[4]  Ian W. Hunter,et al.  Automatic Classification of Protein Sequences into Structure/Function Groups via Parallel Cascade Identification: A Feasibility Study , 2000, Annals of Biomedical Engineering.

[5]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[6]  Manfred Morari,et al.  A clustering technique for the identification of piecewise affine systems , 2001, Autom..

[7]  H L Galiana,et al.  Vestibulo-ocular reflex (VOR) biases in normal subjects and patients with compensated vestibular loss. , 1995, Acta oto-laryngologica.

[8]  Robert E. Kearney,et al.  Parametric identification of nonlinear hybrid systems , 1999, Proceedings of the First Joint BMES/EMBS Conference. 1999 IEEE Engineering in Medicine and Biology 21st Annual Conference and the 1999 Annual Fall Meeting of the Biomedical Engineering Society (Cat. N.

[9]  Sheng Chen,et al.  Representations of non-linear systems: the NARMAX model , 1989 .

[10]  M. J. Korenberg,et al.  A robust orthogonal algorithm for system identification and time-series analysis , 1989, Biological Cybernetics.

[11]  K Beykirch,et al.  Horizontal vestibulo-ocular reflex after acute peripheral lesions. , 1989, Acta oto-laryngologica. Supplementum.

[12]  C.G. Rey,et al.  Parametric classification of segments in ocular nystagmus , 1991, IEEE Transactions on Biomedical Engineering.

[13]  H L Galiana,et al.  Comparison of linear vs. non-linear methods for analysing the vestibulo-ocular reflex (VOR). , 1995, Acta oto-laryngologica.

[14]  D. A. Robinson,et al.  A model of quick phase generation in the vestibuloocular reflex , 1978, Biological Cybernetics.

[15]  S. Billings,et al.  Orthogonal parameter estimation algorithm for non-linear stochastic systems , 1988 .

[16]  I. J. Leontaritis,et al.  Input-output parametric models for non-linear systems Part II: stochastic non-linear systems , 1985 .

[17]  N. Shimizu [Neurology of eye movements]. , 2000, Rinsho shinkeigaku = Clinical neurology.

[18]  Sheng Chen,et al.  Extended model set, global data and threshold model identification of severely non-linear systems , 1989 .

[19]  Alberto Bemporad,et al.  A Greedy Approach to Identification of Piecewise Affine Models , 2003, HSCC.

[20]  S. Shankar Sastry,et al.  Conflict resolution for air traffic management: a study in multiagent hybrid systems , 1998, IEEE Trans. Autom. Control..

[21]  Thomas A. Henzinger,et al.  Modularity for Timed and Hybrid Systems , 1997, CONCUR.

[22]  Heinz Unbehauen,et al.  Bilinear Continuous-Time Systems Identification via Hartley-Based Modulating Functions , 1998, Autom..

[23]  Lennart Ljung,et al.  Nonlinear black-box modeling in system identification: a unified overview , 1995, Autom..

[24]  S. Billings,et al.  Least squares parameter estimation algorithms for non-linear systems , 1984 .

[25]  V. Panuska A stochastic approximation method for identification of linear systems using adaptive filtering , 1968 .

[26]  Henrietta L. Galiana,et al.  The role of structural symmetry in linearizing ocular reflexes , 1991, Biological Cybernetics.

[27]  H. L. Galiana,et al.  Transient analysis of vestibular nystagmus , 2005, Biological Cybernetics.

[28]  Alberto Bemporad,et al.  Identification of piecewise affine systems via mixed-integer programming , 2004, Autom..

[29]  P. Young The use of linear regression and related procedures for the identification of dynamic processes , 1968 .

[30]  Petre Stoica,et al.  Asymptotic behaviour of some bootstrap estimators , 1981 .

[31]  D. Whitteridge Movements of the eyes R. H. S. Carpenter, Pion Ltd, London (1977), 420 pp., $27.00 , 1979, Neuroscience.

[32]  R. Kearney,et al.  A bootstrap method for structure detection of NARMAX models , 2004 .

[33]  S. A. Billings,et al.  Identification of continuous time nonlinear systems using delayed state variable filters , 1994 .

[34]  J. M. Schumacher,et al.  Impulsive-smooth behavior in multimode systems part I: State-space and polynomial representations , 1996, Autom..

[35]  P. Young,et al.  Time series analysis, forecasting and control , 1972, IEEE Transactions on Automatic Control.

[36]  Thomas A. Henzinger,et al.  The theory of hybrid automata , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[37]  Paul Gastin,et al.  On the Power of Non-Observable Actions in Timed Automata , 1996, STACS.

[38]  V. Panuska An adaptive recursive-least-squares identification algorithm , 1969 .

[39]  Tien C. Hsia,et al.  System identification: Least-squares methods , 1977 .

[40]  John G. Proakis,et al.  Digital Signal Processing: Principles, Algorithms, and Applications , 1992 .

[41]  Heinz Unbehauen,et al.  Continuous-time approaches to system identification - A survey , 1990, Autom..

[42]  H.L. Galiana A nystagmus strategy to linearize the vestibulo-ocular reflex , 1991, IEEE Transactions on Biomedical Engineering.