Novel sensor and telecommunication applications of photonic crystal fibers

Photonic crystal fibers are novel optical waveguides containing a periodic array of air holes running along the fiber around a solid or hollow core. These fibers have recently attracted great interest in many research areas such as in nonlinear optics and measurement science as their manufacturing process allows for a high flexibility in the fiber design. Index-guiding photonic crystal fibers are commonly referred to as microstructured fibers whereas hollow-core photonic crystal fibers which guide light through a photonic bandgap effect are called photonic bandgap fibers. The thesis provides results on the polarization properties of microstructured fibers and presents novel applications which utilize both the unique physical structure and optical characteristics of microstructured and photonic bandgap fibers. Polarization effects can have a great impact on the operation of fiber-based devices and communication systems. In particular, polarization-mode dispersion can limit long distance high bit-rate data transmission. In this thesis, the polarization characteristics of microstructured fibers and the sensitivity of these properties to the temperature and wavelength are studied. Also, polarization-mode dispersion of large mode-area microstructured fibers is investigated. One of the earliest applications of microstructured fibers is supercontinuum generation. In the thesis, supercontinuum generation is studied in large mode-area microstructured fibers by employing nanosecond laser pulses. The special properties of these fibers allow for the realization of single-mode supercontinuum sources with a high spectral density, low output beam divergence and low polarization dependence. Moreover, a novel nanosecond supercontinuum source based on an acetylene-filled nonlinear microstructured fiber is presented. The approach provides a broadband source that is self-referenced to the absorption lines of the gas. Air-guiding photonic bandgap fibers can guide more than 98% of the light in air thus reducing the influence of the material parameters of silica on the optical properties of the fiber. By filling the fiber holes with gas, such a fiber can provide a very long optical path length in compact fashion. In this thesis, the use of photonic bandgap fibers in gas sensing is studied. The high sensitivity and long interaction length provided by PBFs allows for the detection of molecules with weak absorption lines. In addition, a compact optical wavelength reference based on a gas-filled photonic bandgap fiber is presented. By utilizing lock-in technique, the output frequency of the laser was stabilized to the center point of weak acetylene absorption lines coinciding with wavelength division multiplexing channels.

[1]  Anders Bjarklev,et al.  Photonic crystal fibres , 2003 .

[2]  D. M. Atkin,et al.  All-silica single-mode optical fiber with photonic crystal cladding. , 1996, Optics letters.

[3]  Ming-Jun Li,et al.  Highly birefringent hollow-core photonic bandgap fiber , 2005, OFC/NFOEC Technical Digest. Optical Fiber Communication Conference, 2005..

[4]  H. S. Wolff,et al.  iRun: Horizontal and Vertical Shape of a Region-Based Graph Compression , 2022, Sensors.

[5]  D. Richardson,et al.  Nonlinearity in holey optical fibers: measurement and future opportunities. , 1999, Optics letters.

[6]  M. Lehtonen Applications of microstructured fibers : supercontinua and novel components , 2005 .

[7]  Heike Ebendorff-Heidepriem,et al.  Bismuth glass holey fibers with high nonlinearity. , 2004, Optics express.

[8]  P S Westbrook,et al.  Highly tunable birefringent microstructured optical fiber. , 2002, Optics letters.

[9]  K. Okamoto,et al.  Polarization-maintaining fibers and their applications , 1986 .

[10]  D. Allan,et al.  Low-loss hollow-core silica/air photonic bandgap fibre , 2003, Nature.

[11]  W. Jin,et al.  Design and modeling of a photonic crystal fiber gas sensor. , 2003, Applied optics.

[12]  H. Ludvigsen,et al.  Wavelength reference for optical telecommunications based on a temperature-tunable silicon etalon , 2003 .

[13]  Tuomo Ritari,et al.  Supercontinuum generation in large mode-area microstructured fibers , 2005 .

[14]  Amnon Yariv,et al.  Loss analysis of air-core photonic crystal fibers. , 2003, Optics letters.

[15]  W. Penrose,et al.  Sensors, Chemical Sensors, Electrochemical Sensors, and ECS , 2003 .

[16]  Maryanne C. J. Large,et al.  Fabrication of microstructured polymer optical fibres , 2004 .

[17]  J. Arriaga,et al.  Anomalous dispersion in photonic crystal fiber , 2000, IEEE Photonics Technology Letters.

[18]  F. Couny,et al.  Electromagnetically-induced transparency and saturable absorption in all-fiber devices based on acetylene-filled hollow-core PCF , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[19]  Ivan P. Kaminow,et al.  Polarization in optical fibers , 1981 .

[20]  Chao Lu,et al.  Asymmetric core photonic‐crystal fibers with high birefringence , 2004 .

[21]  Markus W. Sigrist,et al.  Trace gas monitoring by laser-photoacoustic spectroscopy , 1995 .

[22]  N. Gisin,et al.  Local birefringence measurements in single-mode fibers with coherent optical frequency-domain reflectometry , 1998, IEEE Photonics Technology Letters.

[23]  E. Cornell,et al.  Teflon feedthrough for coupling optical fibers into ultrahigh vacuum systems. , 1998, Applied optics.

[24]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[25]  James A. Harrington,et al.  A Review of IR Transmitting, Hollow Waveguides , 2000 .

[26]  H. Ludvigsen,et al.  Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers. , 2002, Optics express.

[27]  R. McPhedran,et al.  Long wavelength behavior of the fundamental mode in microstructured optical fibers. , 2005, Optics express.

[28]  Robert R. Alfano,et al.  Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers , 1987 .

[29]  P. V. Mamyshev,et al.  Mutual influence of the parametric effects and stimulated Raman scattering in optical fibers , 1990 .

[30]  J. Jensen,et al.  Selective detection of antibodies in microstructured polymer optical fibers. , 2005, Optics express.

[31]  G. Stewart Optical Waveguide Theory , 1983, Handbook of Laser Technology and Applications.

[32]  B D Gupta,et al.  Detection of gases with porous-clad tapered fibers. , 1995, Applied optics.

[33]  D. Wandt,et al.  Supercontinuum generation with 200 pJ laser pulses in an extruded SF6 fiber at 1560 nm. , 2003, Optics express.

[34]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[35]  Tadeusz Martynkien,et al.  Effects of hydrostatic pressure on phase and group modal birefringence in microstructured holey fibers. , 2004, Applied optics.

[36]  Karlsson,et al.  Cherenkov radiation emitted by solitons in optical fibers. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[37]  K. Hill,et al.  Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication , 1978 .

[38]  P. Roberts,et al.  Hollow-core PCF for guidance in the mid to far infra-red. , 2005, Optics express.

[39]  R. Leonhardt,et al.  White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber. , 2001, Optics letters.

[40]  Knight,et al.  Single-Mode Photonic Band Gap Guidance of Light in Air. , 1999, Science.

[41]  C. Jørgensen,et al.  High-power supercontinuum generation in highly nonlinear, dispersion-shifted fibers by use of a continuous-wave Raman fiber laser. , 2004, Optics letters.

[42]  S. Kawanishi,et al.  Optical properties of a low-loss polarization-maintaining photonic crystal fiber. , 2001, Optics express.

[43]  D. L. Favin,et al.  Polarization-mode dispersion measurements based on transmission spectra through a polarizer , 1994 .

[44]  Do-Hyun Kim,et al.  Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity. , 2004, Optics express.

[45]  E. Marcatili,et al.  B.S.T.J. brief: A new optical fiber , 1973 .

[46]  J. Limpert,et al.  Stress-induced single-polarization single-transverse mode photonic crystal fiber with low nonlinearity. , 2005, Optics express.

[47]  David J. Richardson,et al.  Extruded singlemode non-silica glass holey optical fibres , 2002 .

[48]  F. Omenetto,et al.  Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation. , 2002, Optics express.

[49]  A. Bjarklev,et al.  Gas sensing using air-guiding photonic bandgap fibers , 2004, Conference on Lasers and Electro-Optics, 2004. (CLEO)..

[50]  H. Ludvigsen,et al.  Supercontinuum and gas cell in a single microstructured fiber , 2006, 2006 Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference.

[51]  J. C. Peterson,et al.  Saturated absorption in acetylene and hydrogen cyanide in hollow-core photonic bandgap fibers. , 2005, Optics express.

[52]  P. Russell Photonic Crystal Fibers , 2003, Science.

[53]  J. P. von der Weid,et al.  Polarization mode dispersion of short and long single-mode fibers , 1991 .

[54]  M.S. Demokan,et al.  Temperature-insensitive Interferometer using a highly birefringent photonic Crystal fiber loop mirror , 2004, IEEE Photonics Technology Letters.

[55]  Nicolas Gisin,et al.  Polarization-mode dispersion of large mode-area photonic crystal fibers , 2003 .

[56]  Toshio Morioka,et al.  More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing , 2000 .

[57]  Alexander Argyros,et al.  Hollow-core microstructured polymer optical fiber. , 2006, Optics letters.

[58]  R. Stolen,et al.  Generation of random-hole optical fiber. , 2003, Optics letters.

[59]  H R Simonsen,et al.  Improved large-mode-area endlessly single-mode photonic crystal fibers. , 2003, Optics letters.

[60]  John Canning,et al.  Temperature independent highly birefringent photonic crystal fibre. , 2004, Optics express.

[61]  Christophe Peucheret,et al.  10 Gbit/s transmission over air-guiding photonic bandgap fibre at 1550 nm , 2005 .

[62]  Nicolaas Bloembergen,et al.  Superbroadening in H2O and D2O by self-focused picosecond pulses from a YAlG:Nd laser , 1977 .

[63]  Andrea Galtarossa,et al.  In-field comparison among polarization-mode-dispersion measurement techniques , 1996 .

[64]  Hugo Thienpont,et al.  Birefringent photonic crystal fiber as a multi- parameter sensor , 2003 .

[65]  John M. Fini,et al.  Microstructure fibres for optical sensing in gases and liquids , 2004 .

[66]  Martin Nielsen,et al.  Photonic crystal fiber design based on the V-parameter. , 2003, Optics express.

[67]  William J. Wadsworth,et al.  Supercontinuum generation in tapered fibers. , 2000, Optics letters.

[68]  M. Delgado-Pinar,et al.  Ultrahigh birefringent nonlinear microstructured fiber , 2004, IEEE Photonics Technology Letters.

[69]  T A Birks,et al.  Structural rocking filters in highly birefringent photonic crystal fiber. , 2003, Optics letters.

[70]  Nicolas Gisin,et al.  Experimental investigation of the polarization properties of a hollow core photonic bandgap fiber for 1550 nm. , 2005, Optics express.

[71]  R. McPhedran,et al.  Symmetry and degeneracy in microstructured optical fibers. , 2001, Optics letters.

[72]  S. Nolte,et al.  High-power air-clad large-mode-area photonic crystal fiber laser , 2003, 2003 Conference on Lasers and Electro-Optics Europe (CLEO/Europe 2003) (IEEE Cat. No.03TH8666).

[73]  Shufang Luo,et al.  Applications of LPG fiber optical sensors for relative humidity and chemical-warfare-agents monitoring , 2002, SPIE/COS Photonics Asia.

[74]  C. Raman A new radiation , 1953 .

[75]  L. Provino,et al.  Supercontinuum generation in air–silica microstructured fibers with nanosecond and femtosecond pulse pumping , 2002 .

[76]  Kazuhide Nakajima,et al.  Progress on low loss photonic crystal fibers , 2005 .

[77]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[78]  L. Mollenauer,et al.  Discovery of the soliton self-frequency shift. , 1986, Optics letters.

[79]  C. Latrasse,et al.  An absolute frequency reference at 192.6 THz (1556 nm) based on a two-photon absorption line of rubidium at 778 nm for WDM communication systems , 1997, IEEE Photonics Technology Letters.

[80]  C. Headley,et al.  Continuous-wave pumping in the anomalous- and normal-dispersion regimes of nonlinear fibers for supercontinuum generation. , 2005, Optics letters.

[81]  N. Mortensen,et al.  Polarization maintaining large mode area photonic crystal fiber. , 2004, Optics express.

[82]  Jun Ye,et al.  Optical Frequency Synthesis Based on Mode- Locked Lasers , 2001 .

[83]  D. Payne,et al.  The stress-optic effect in optical fibers , 1983, IEEE Journal of Quantum Electronics.

[84]  David J. Richardson,et al.  Sensing with microstructured optical fibres , 2001 .

[85]  Anders Bjarklev,et al.  Material effects in air-guiding photonic bandgap fibers , 2003 .

[86]  Perry,et al.  Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses. , 1995, Physical review letters.

[87]  J. Fujimoto,et al.  Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber. , 2001, Optics letters.

[88]  Hall,et al.  Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb , 2000, Physical review letters.

[89]  A. Stentz,et al.  Efficient visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm , 1999, Technical Digest. Summaries of papers presented at the Conference on Lasers and Electro-Optics. Postconference Edition. CLEO '99. Conference on Lasers and Electro-Optics (IEEE Cat. No.99CH37013).

[90]  G. Foschini,et al.  Statistical theory of polarization dispersion in single mode fibers , 1991 .

[91]  Niels Asger Mortensen,et al.  Effective area of photonic crystal fibers. , 2002, Optics express.

[92]  W. Peng,et al.  Random-hole optical fiber evanescent-wave gas sensing. , 2004, Optics letters.

[93]  R. Osgood,et al.  Elliptical-hole photonic crystal fibers. , 2001, Optics letters.

[94]  G. Agrawal Fiber‐Optic Communication Systems , 2021 .

[95]  A. Fercher,et al.  Submicrometer axial resolution optical coherence tomography. , 2002, Optics letters.

[96]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[97]  Fetah Benabid,et al.  Particle levitation and guidance in hollow-core photonic crystal fiber. , 2002, Optics express.

[98]  J. Shephard,et al.  Single-mode mid-IR guidance in a hollow-core photonic crystal fiber. , 2005, Optics express.

[99]  Knight,et al.  Photonic band gap guidance in optical fibers , 1998, Science.

[100]  M. Koshiba,et al.  Structural dependence of effective area and mode field diameter for holey fibers. , 2003, Optics express.

[101]  Tadeusz Martynkien,et al.  Measurements of modal birefringence and polarimetric sensitivity of the birefringent holey fiber to hydrostatic pressure and strain , 2004 .

[102]  F Benabid,et al.  Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen. , 2004, Physical review letters.

[103]  Ephraim Suhir,et al.  Mechanical approach to the evaluation of the low temperature threshold of added transmission losses in single-coated optical fibers , 1990 .

[104]  Salvatore Iannotta,et al.  Resonant photoacoustic simultaneous detection of methane and ethylene by means of a 1.63-μm diode laser , 2002 .

[105]  W. Weber,et al.  Demonstration of a high-temperature fiber-optic gas sensor made with a sol-gel process to incorporate a fluorescent indicator. , 1999, Applied optics.

[106]  C Jacobsen,et al.  Low-loss photonic crystal fibers for transmission systems and their dispersion properties. , 2004, Optics express.

[107]  P. Andrés,et al.  Nearly zero ultraflattened dispersion in photonic crystal fibers. , 2000, Optics letters.

[108]  P. Russell,et al.  Endlessly single-mode photonic crystal fiber. , 1997, Optics letters.

[109]  George Stewart,et al.  Prospects for fibre-optic evanescent-field gas sensors using absorption in the near-infrared , 1997 .

[110]  J. Broeng,et al.  Highly birefringent index-guiding photonic crystal fibers , 2001, IEEE Photonics Technology Letters.

[111]  S. Kawanishi,et al.  Absolutely single polarization photonic crystal fiber , 2004, IEEE Photonics Technology Letters.

[112]  John,et al.  Strong localization of photons in certain disordered dielectric superlattices. , 1987, Physical review letters.

[113]  P. Roberts,et al.  Demonstration of ultra-flattened dispersion in photonic crystal fibers. , 2002, Optics express.

[114]  Ammar Hideur,et al.  Theoretical and experimental study of the birefringence of a photonic crystal fiber , 2003 .

[115]  Keith J. Blow,et al.  Theoretical description of transient stimulated Raman scattering in optical fibers , 1989 .

[116]  M Lehtonen,et al.  Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses. , 2004, Optics express.

[117]  H. Yasaka,et al.  Optical fiber with sharp optical absorptions by vibrational-rotational absorption of C/sub 2/H/sub 2/ molecules , 1990, IEEE Photonics Technology Letters.

[118]  A. S. Siddiqui,et al.  Theoretical analysis and measurement of effects of fibre twist on polarisation mode dispersion of optical fibres , 1995 .

[119]  D. M. Atkin,et al.  Full 2-D photonic bandgaps in silica/air structures , 1995 .

[120]  B. Hermansson,et al.  Efficient beam propagation techniques , 1990 .

[121]  Charlotte R. Bennett,et al.  Damage threshold and bending properties of photonic crystal and photonic band-gap optical fibers , 2004, SPIE Security + Defence.

[122]  C. N. Banwell,et al.  Fundamentals of molecular spectroscopy , 1966 .

[123]  T. A. Birks,et al.  Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres , 2005, Nature.

[124]  P. Roberts,et al.  Low loss (1.7 dB/km) hollow core photonic bandgap fiber , 2004, Optical Fiber Communication Conference, 2004. OFC 2004.

[125]  Jonathan Knight,et al.  Large mode area photonic crystal fibre , 1998 .

[126]  E. Snitzer Optical fiber telecommunications , 1982, IEEE Journal of Quantum Electronics.

[127]  M. Lehtonen,et al.  Supercontinuum generation in a highly biréfringent microstructured fiber , 2003 .

[128]  Abraham Katzir,et al.  Silver halide photonic crystal fibers for the middle infrared. , 2004, Applied optics.

[129]  K. Saitoh,et al.  Photonic bandgap fibers with high birefringence , 2002, IEEE Photonics Technology Letters.

[130]  F. Benabid,et al.  Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber , 2002, Science.

[131]  Dennis Derickson,et al.  Fiber optic test and measurement , 1998 .

[132]  David J. Richardson,et al.  Holey optical fibers: an efficient modal model , 1999 .

[133]  A. Stentz,et al.  Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm , 2000 .

[134]  Robert R. Alfano,et al.  The Supercontinuum Laser Source , 1989 .

[135]  J. Broeng,et al.  High-birefringent photonic crystal fiber , 2001, OFC 2001. Optical Fiber Communication Conference and Exhibit. Technical Digest Postconference Edition (IEEE Cat. 01CH37171).

[136]  Nicolas Gisin,et al.  Investigation of the ratio between phase and Group birefringence in optical single-mode fibers , 2003 .

[137]  P. Jeppesen,et al.  Transmission over 5.6 km large effective area and low-loss (1.7 dB/km) photonic crystal fibre , 2003 .

[138]  N. George,et al.  Chemical sensing with microbent optical fiber. , 2001, Optics letters.

[139]  Saikat Ghosh,et al.  Resonant optical interactions with molecules confined in photonic band-gap fibers. , 2005, Physical review letters.

[140]  Ole Bang,et al.  The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength. , 2005, Optics express.

[141]  Nicolas Gisin,et al.  Distributed beatlength measurement in single-mode fibers with optical frequency-domain reflectometry , 2002 .

[142]  Christophe Peucheret,et al.  40 Gbit/s transmission over photonic crystal fibre using mid-span spectral inversion in highly nonlinear photonic crystal fibre , 2003 .

[143]  D. Richardson,et al.  Polarization mode dispersion reduction in spun large mode area silica holey fibres. , 2004, Optics express.

[144]  Jes Henningsen,et al.  The ν1+ν3 and the ν1+ν2+ν41+ν5−1 Combination Bands of 13C2H2. Linestrengths, Broadening Parameters, and Pressure Shifts , 2001 .

[145]  Miguel V. Andrés,et al.  Designing a photonic crystal fibre with flattened chromatic dispersion , 1999 .

[146]  Roger H. Stolen,et al.  Development of the stimulated Raman spectrum in single-mode silica fibers , 1984 .

[147]  F. Harren,et al.  Ir Laser Photothermal Trace Gas-Detection Applied to Environmental and Biological Problems , 1995 .

[148]  Wei Jin,et al.  Evanescent-wave gas sensing using microstructure fiber , 2002 .

[149]  David J. Richardson,et al.  Chalcogenide holey fibres , 2000 .

[150]  Yoshinori Namihira,et al.  Comparison of various polarisation mode dispersion measurement methods in optical fibres , 1992 .

[151]  C. D. de Matos,et al.  All-fiber chirped pulse amplification using highly-dispersive air-core photonic bandgap fiber. , 2003, Optics express.

[152]  T A Birks,et al.  Highly birefringent photonic crystal fibers. , 2000, Optics letters.

[153]  P. Russell,et al.  Tellurite photonic crystal fiber. , 2003, Optics express.

[154]  Tuomo Ritari,et al.  Gas filled photonic bandgap fibers as wavelength references , 2005 .

[155]  N. Gisin,et al.  Experimental study of polarization properties of highly birefringent photonic crystal fibers. , 2004, Optics express.

[156]  H. Ludvigsen,et al.  Absorption and transmission spectral measurement of fiber-optic components using supercontinuum radiation , 2005 .

[157]  Hugo Thienpont,et al.  Phase and group modal birefringence of triple-defect photonic crystal fibres , 2005 .

[158]  M. Saruwatari,et al.  Ultrawide spectral range group-velocity dispersion measurement utilizing supercontinuum in an optical fiber pumped by a 1.5 /spl mu/m compact laser source , 1995 .

[159]  J. Henningsen,et al.  Intraline tunable CO2 waveguide lasers and applications in high resolution spectroscopy , 1995 .

[160]  Jonathan Shephard,et al.  High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers. , 2004, Optics express.

[161]  G. Vienne,et al.  Air-guiding photonic bandgap fibers: spectral properties, macrobending loss, and practical handling , 2004, Journal of Lightwave Technology.

[162]  Simon Fleming,et al.  Microstructured polymer optical fibre. , 2001 .

[163]  N. Gisin,et al.  How accurately can one measure a statistical quantity like polarization-mode dispersion? , 1996, IEEE Photonics Technology Letters.

[164]  Robert R. Alfano,et al.  Emission in the Region 4000 to 7000 Å Via Four-Photon Coupling in Glass , 1970 .

[165]  Y. Awaji,et al.  Accurate optical frequency atlas of the 1.5-µm bands of acetylene , 1996 .

[166]  Goëry Genty,et al.  Supercontinuum generation in microstructured fibers and novel optical measurement techniques , 2004 .

[167]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[168]  E. Sorokin,et al.  Low-threshold supercontinuum generation from an extruded SF6 PCF using a compact Cr4+:YAG laser , 2004 .

[169]  B. Heffner,et al.  Automated measurement of polarization mode dispersion using Jones matrix eigenanalysis , 1992, IEEE Photonics Technology Letters.

[170]  Tasshi Dennis,et al.  Wavelength references for 1300-nm wavelength-division multiplexing , 2002 .

[171]  W. Tomlinson,et al.  Femtosecond white-light continuum pulses. , 1983, Optics letters.

[172]  Y Awaji,et al.  Optical frequency measurement of the H(12)C(14)N Lamb-dip-stabilized 1.5-microm diode laser. , 1995, Optics letters.

[173]  Georges Humbert,et al.  Hollow core photonic crystal fibers for beam delivery. , 2004, Optics express.

[174]  J. Knight,et al.  Dispersion compensation using single-material fibers , 1999, IEEE Photonics Technology Letters.

[175]  P. Russell,et al.  Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres. , 2004, Optics express.

[176]  Nick Doran,et al.  Large nonlinear pulse broadening in long lengths of monomode fibre , 1983 .

[177]  R. E. Wagner,et al.  Phenomenological approach to polarisation dispersion in long single-mode fibres , 1986 .

[178]  R. Dyott,et al.  Elliptical Fiber Waveguides , 1995 .

[179]  P. Roberts,et al.  Ultimate low loss of hollow-core photonic crystal fibres. , 2005, Optics express.

[180]  Y Awaji,et al.  High-frequency-stability laser at 1.5 microm using Doppler-free molecular lines. , 1995, Optics letters.

[181]  Edgar Voges,et al.  Modelling of polarisation mode dispersion in singlemode fibres , 1997 .