Laminar signal extraction over extended cortical areas by means of a spatial GLM

There is converging evidence that distinct neuronal processes leave distinguishable footprints in the laminar BOLD response. However, even though the achievable spatial resolution in functional MRI has much improved over the years, it is still challenging to separate signals arising from different cortical layers. In this work, we propose a new method to extract laminar signals. We use a spatial General Linear Model in combination with the equivolume principle of cortical layers to unmix laminar signals instead of interpolating through and integrating over a cortical area: thus reducing partial volume effects. Not only do we provide a mathematical framework for extracting laminar signals with a spatial GLM, we also illustrate that the best case scenarios of existing methods can be seen as special cases within the same framework. By means of simulation, we show that this approach has a sharper point spread function, providing better signal localisation. We further assess the partial volume contamination in cortical profiles from high resolution human ex vivo and in vivo structural data, and provide a full account of the benefits and potential caveats. We eschew here any attempt to validate the spatial GLM on the basis of fMRI data as a generally accepted ground-truth pattern of laminar activation does not currently exist. This approach is flexible in terms of the number of layers and their respective thickness, and naturally integrates spatial regularisation along the cortex, while preserving laminar specificity. Care must be taken, however, as this procedure of unmixing is susceptible to sources of noise in the data or inaccuracies in the laminar segmentation.

[1]  Peter B. Jones,et al.  373. Adolescence is Associated with Genomically Patterned Consolidation of the Hubs of the Human Brain Connectome , 2016, Biological Psychiatry.

[2]  R. Goebel,et al.  Cortical Depth Dependent Functional Responses in Humans at 7T: Improved Specificity with 3D GRASE , 2013, PloS one.

[3]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .

[4]  K. Uğurbil,et al.  Layer-Specific fMRI Reflects Different Neuronal Computations at Different Depths in Human V1 , 2012, PloS one.

[5]  Dominique Hasboun,et al.  Combined Laplacian-equivolumic model for studying cortical lamination with ultra high field MRI (7 T) , 2015, 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI).

[6]  Claudine Joëlle Gauthier,et al.  Cortical lamina-dependent blood volume changes in human brain at 7T , 2015, NeuroImage.

[7]  Kâmil Uğurbil,et al.  The road to functional imaging and ultrahigh fields , 2012, NeuroImage.

[8]  Abraham Z. Snyder,et al.  Resting-state functional connectivity in the human brain revealed with diffuse optical tomography , 2009, NeuroImage.

[9]  Tomas Knapen,et al.  Porcupine: A visual pipeline tool for neuroimaging analysis , 2017, bioRxiv.

[10]  Stephen M. Smith,et al.  General multilevel linear modeling for group analysis in FMRI , 2003, NeuroImage.

[11]  D. Barazany,et al.  Visualization of cortical lamination patterns with magnetic resonance imaging. , 2012, Cerebral cortex.

[12]  Kâmil Uludag,et al.  Linking brain vascular physiology to hemodynamic response in ultra-high field MRI , 2017, NeuroImage.

[13]  E. G. Jones,et al.  Viewpoint: the core and matrix of thalamic organization , 1998, Neuroscience.

[14]  Hui Zhang,et al.  Detailed laminar characteristics of the human neocortex revealed by NODDI , 2013 .

[15]  G. Paxinos,et al.  THE HUMAN NERVOUS SYSTEM , 1975 .

[16]  Juliane Dinse,et al.  A computational framework for ultra-high resolution cortical segmentation at 7Tesla , 2014, NeuroImage.

[17]  Christine L. Tardif,et al.  A subject-specific framework for in vivo myeloarchitectonic analysis using high resolution quantitative MRI , 2016, NeuroImage.

[18]  Rolf Gruetter,et al.  Studying cyto and myeloarchitecture of the human cortex at ultra-high field with quantitative imaging: R1, R2 * and magnetic susceptibility , 2017, NeuroImage.

[19]  Lawrence L. Wald,et al.  Laminar analysis of 7T BOLD using an imposed spatial activation pattern in human V1 , 2010, NeuroImage.

[20]  P. Matthews,et al.  Independent anatomical and functional measures of the V1/V2 boundary in human visual cortex. , 2005, Journal of vision.

[21]  H. Gudbjartsson,et al.  The rician distribution of noisy mri data , 1995, Magnetic resonance in medicine.

[22]  Klaas E. Stephan,et al.  A hemodynamic model for layered BOLD signals , 2016, NeuroImage.

[23]  Nikos Makris,et al.  Automatically parcellating the human cerebral cortex. , 2004, Cerebral cortex.

[24]  Laurentius Huber,et al.  High-Resolution CBV-fMRI Allows Mapping of Laminar Activity and Connectivity of Cortical Input and Output in Human M1 , 2017, Neuron.

[25]  A. Strümpell,et al.  Zeitschrift für die gesamte Neurologie und Psychiatrie , 1922, Deutsche Zeitschrift für Nervenheilkunde.

[26]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[27]  S. Francis,et al.  Correspondence of human visual areas identified using functional and anatomical MRI in vivo at 7 T , 2012, Journal of magnetic resonance imaging : JMRI.

[28]  David G. Norris,et al.  Diffusion tensor characteristics of gyrencephaly using high resolution diffusion MRI in vivo at 7T , 2015, NeuroImage.

[29]  B. Biswal,et al.  Functional connectivity of default mode network components: Correlation, anticorrelation, and causality , 2009, Human brain mapping.

[30]  N. Ramsey,et al.  Cortical Depth-Dependent Temporal Dynamics of the BOLD Response in the Human Brain , 2011, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[31]  R. Pearson,et al.  The Human Nervous System. Basic Elements of Structure and Function , 1967, The Yale Journal of Biology and Medicine.

[32]  A M Dale,et al.  Measuring the thickness of the human cerebral cortex from magnetic resonance images. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[33]  H. Heinze,et al.  Laminar activity in the hippocampus and entorhinal cortex related to novelty and episodic encoding , 2014, Nature Communications.

[34]  Junjie Liu,et al.  Laminar profiles of functional activity in the human brain , 2007, NeuroImage.

[35]  F. D. Lange,et al.  Selective Activation of the Deep Layers of the Human Primary Visual Cortex by Top-Down Feedback , 2016, Current Biology.

[36]  P. Kara,et al.  Neural correlates of single vessel hemodynamic responses in vivo , 2016, Nature.

[37]  Pierre-Louis Bazin,et al.  Anatomically motivated modeling of cortical laminae , 2014, NeuroImage.

[38]  Jerry L. Prince,et al.  Topology correction in brain cortex segmentation using a multiscale, graph-based algorithm , 2002, IEEE Transactions on Medical Imaging.

[39]  Markus Barth,et al.  A cortical vascular model for examining the specificity of the laminar BOLD signal , 2016, NeuroImage.

[40]  Natalia Petridou,et al.  Laminar imaging of positive and negative BOLD in human visual cortex at 7T , 2018, NeuroImage.

[41]  T. Tallinen,et al.  Gyrification from constrained cortical expansion , 2014, Proceedings of the National Academy of Sciences.

[42]  A. Koretsky,et al.  Deciphering laminar-specific neural inputs with line-scanning fMRI , 2013, Nature Methods.

[43]  N. Filippini,et al.  Group comparison of resting-state FMRI data using multi-subject ICA and dual regression , 2009, NeuroImage.

[44]  René Scheeringa,et al.  The relationship between oscillatory EEG activity and the laminar-specific BOLD signal , 2016, Proceedings of the National Academy of Sciences.

[45]  J. A. Sethian,et al.  Fast Marching Methods , 1999, SIAM Rev..

[46]  Peter J. Koopmans,et al.  Multi-echo fMRI of the cortical laminae in humans at 7T , 2011, NeuroImage.

[47]  D. Norris,et al.  Layer‐specific BOLD activation in human V1 , 2010, Human brain mapping.

[48]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[49]  Nikolaus Weiskopf,et al.  In-vivo magnetic resonance imaging (MRI) of laminae in the human cortex , 2017, NeuroImage.

[50]  Henry J. Alitto,et al.  Corticothalamic feedback and sensory processing , 2003, Current Opinion in Neurobiology.

[51]  F. Dick,et al.  In Vivo Functional and Myeloarchitectonic Mapping of Human Primary Auditory Areas , 2012, The Journal of Neuroscience.

[52]  S. Bok Der Einflu\ der in den Furchen und Windungen auftretenden Krümmungen der Gro\hirnrinde auf die Rindenarchitektur , 1929 .

[53]  A. Michelson,et al.  Fourier's Series , 1898, Nature.

[54]  Lars Muckli,et al.  Laminar fMRI: Applications for cognitive neuroscience , 2017, NeuroImage.